End of training
Browse files
README.md
CHANGED
@@ -5,21 +5,21 @@ base_model: bert-base-uncased
|
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
model-index:
|
8 |
-
- name:
|
9 |
results: []
|
10 |
---
|
11 |
|
12 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
should probably proofread and complete it, then remove this comment. -->
|
14 |
|
15 |
-
#
|
16 |
|
17 |
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss:
|
20 |
-
- Qwk: 0.
|
21 |
-
- Mse:
|
22 |
-
- Rmse: 1.
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -48,108 +48,108 @@ The following hyperparameters were used during training:
|
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
-
| Training Loss | Epoch | Step | Validation Loss | Qwk
|
52 |
-
|
53 |
-
| No log | 1.0 | 2 |
|
54 |
-
| No log | 2.0 | 4 |
|
55 |
-
| No log | 3.0 | 6 | 6.
|
56 |
-
| No log | 4.0 | 8 | 5.
|
57 |
-
|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
|
|
61 |
-
|
|
62 |
-
| 2.
|
63 |
-
| 2.
|
64 |
-
| 2.
|
65 |
-
| 2.
|
66 |
-
| 2.
|
67 |
-
| 1.
|
68 |
-
| 1.
|
69 |
-
| 1.
|
70 |
-
| 1.
|
71 |
-
| 1.
|
72 |
-
| 1.
|
73 |
-
| 1.
|
74 |
-
| 1.
|
75 |
-
| 1.
|
76 |
-
| 1.
|
77 |
-
|
|
78 |
-
|
|
79 |
-
|
|
80 |
-
|
|
81 |
-
|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.
|
119 |
-
| 0.
|
120 |
-
| 0.
|
121 |
-
| 0.
|
122 |
-
| 0.
|
123 |
-
| 0.
|
124 |
-
| 0.
|
125 |
-
| 0.
|
126 |
-
| 0.
|
127 |
-
| 0.
|
128 |
-
| 0.
|
129 |
-
| 0.
|
130 |
-
| 0.
|
131 |
-
| 0.
|
132 |
-
| 0.
|
133 |
-
| 0.
|
134 |
-
| 0.
|
135 |
-
| 0.
|
136 |
-
| 0.
|
137 |
-
| 0.
|
138 |
-
| 0.
|
139 |
-
| 0.
|
140 |
-
| 0.
|
141 |
-
| 0.
|
142 |
-
| 0.
|
143 |
-
| 0.
|
144 |
-
| 0.
|
145 |
-
| 0.
|
146 |
-
| 0.
|
147 |
-
| 0.
|
148 |
-
| 0.
|
149 |
-
| 0.
|
150 |
-
| 0.
|
151 |
-
| 0.
|
152 |
-
| 0.
|
153 |
|
154 |
|
155 |
### Framework versions
|
|
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
model-index:
|
8 |
+
- name: ASAP_FineTuningBERT_AugV5_k2_task1_organization_fold1
|
9 |
results: []
|
10 |
---
|
11 |
|
12 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
should probably proofread and complete it, then remove this comment. -->
|
14 |
|
15 |
+
# ASAP_FineTuningBERT_AugV5_k2_task1_organization_fold1
|
16 |
|
17 |
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.4882
|
20 |
+
- Qwk: -0.0698
|
21 |
+
- Mse: 1.4885
|
22 |
+
- Rmse: 1.2201
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:------:|
|
53 |
+
| No log | 1.0 | 2 | 10.4698 | -0.0007 | 10.4674 | 3.2353 |
|
54 |
+
| No log | 2.0 | 4 | 8.1315 | 0.0 | 8.1297 | 2.8513 |
|
55 |
+
| No log | 3.0 | 6 | 6.6203 | 0.0 | 6.6185 | 2.5727 |
|
56 |
+
| No log | 4.0 | 8 | 5.1594 | 0.0397 | 5.1581 | 2.2711 |
|
57 |
+
| 5.2619 | 5.0 | 10 | 4.2139 | 0.0204 | 4.2128 | 2.0525 |
|
58 |
+
| 5.2619 | 6.0 | 12 | 3.3484 | 0.0 | 3.3476 | 1.8296 |
|
59 |
+
| 5.2619 | 7.0 | 14 | 2.4695 | 0.0335 | 2.4690 | 1.5713 |
|
60 |
+
| 5.2619 | 8.0 | 16 | 2.4274 | 0.0165 | 2.4268 | 1.5578 |
|
61 |
+
| 5.2619 | 9.0 | 18 | 2.0689 | -0.0045 | 2.0685 | 1.4382 |
|
62 |
+
| 2.1268 | 10.0 | 20 | 1.4960 | 0.0315 | 1.4959 | 1.2231 |
|
63 |
+
| 2.1268 | 11.0 | 22 | 1.4326 | 0.0106 | 1.4326 | 1.1969 |
|
64 |
+
| 2.1268 | 12.0 | 24 | 1.5562 | 0.0211 | 1.5563 | 1.2475 |
|
65 |
+
| 2.1268 | 13.0 | 26 | 1.4471 | 0.0 | 1.4472 | 1.2030 |
|
66 |
+
| 2.1268 | 14.0 | 28 | 1.3652 | 0.0 | 1.3653 | 1.1685 |
|
67 |
+
| 1.7632 | 15.0 | 30 | 1.3694 | 0.0 | 1.3695 | 1.1703 |
|
68 |
+
| 1.7632 | 16.0 | 32 | 1.3967 | 0.0 | 1.3969 | 1.1819 |
|
69 |
+
| 1.7632 | 17.0 | 34 | 1.3075 | 0.0 | 1.3077 | 1.1435 |
|
70 |
+
| 1.7632 | 18.0 | 36 | 1.0959 | 0.0 | 1.0962 | 1.0470 |
|
71 |
+
| 1.7632 | 19.0 | 38 | 1.2807 | 0.0310 | 1.2809 | 1.1318 |
|
72 |
+
| 1.2911 | 20.0 | 40 | 1.2929 | 0.0268 | 1.2930 | 1.1371 |
|
73 |
+
| 1.2911 | 21.0 | 42 | 1.0497 | 0.0845 | 1.0498 | 1.0246 |
|
74 |
+
| 1.2911 | 22.0 | 44 | 0.9889 | 0.1424 | 0.9891 | 0.9945 |
|
75 |
+
| 1.2911 | 23.0 | 46 | 1.4049 | 0.0318 | 1.4049 | 1.1853 |
|
76 |
+
| 1.2911 | 24.0 | 48 | 1.4490 | 0.0275 | 1.4489 | 1.2037 |
|
77 |
+
| 0.7404 | 25.0 | 50 | 1.0279 | 0.0799 | 1.0280 | 1.0139 |
|
78 |
+
| 0.7404 | 26.0 | 52 | 1.1402 | 0.0429 | 1.1403 | 1.0678 |
|
79 |
+
| 0.7404 | 27.0 | 54 | 1.1346 | 0.0409 | 1.1347 | 1.0652 |
|
80 |
+
| 0.7404 | 28.0 | 56 | 1.2277 | 0.0135 | 1.2277 | 1.1080 |
|
81 |
+
| 0.7404 | 29.0 | 58 | 1.3712 | -0.0413 | 1.3712 | 1.1710 |
|
82 |
+
| 0.3592 | 30.0 | 60 | 1.4526 | -0.0638 | 1.4526 | 1.2052 |
|
83 |
+
| 0.3592 | 31.0 | 62 | 1.3467 | -0.0549 | 1.3468 | 1.1605 |
|
84 |
+
| 0.3592 | 32.0 | 64 | 1.6744 | -0.1048 | 1.6743 | 1.2939 |
|
85 |
+
| 0.3592 | 33.0 | 66 | 1.3546 | -0.0932 | 1.3548 | 1.1639 |
|
86 |
+
| 0.3592 | 34.0 | 68 | 1.5503 | -0.1470 | 1.5503 | 1.2451 |
|
87 |
+
| 0.2171 | 35.0 | 70 | 1.9329 | -0.1356 | 1.9329 | 1.3903 |
|
88 |
+
| 0.2171 | 36.0 | 72 | 1.5089 | -0.1392 | 1.5091 | 1.2284 |
|
89 |
+
| 0.2171 | 37.0 | 74 | 1.5246 | -0.1416 | 1.5249 | 1.2349 |
|
90 |
+
| 0.2171 | 38.0 | 76 | 1.7712 | -0.1316 | 1.7713 | 1.3309 |
|
91 |
+
| 0.2171 | 39.0 | 78 | 1.4046 | -0.1219 | 1.4050 | 1.1853 |
|
92 |
+
| 0.1885 | 40.0 | 80 | 1.3810 | -0.0741 | 1.3813 | 1.1753 |
|
93 |
+
| 0.1885 | 41.0 | 82 | 1.5772 | -0.0926 | 1.5773 | 1.2559 |
|
94 |
+
| 0.1885 | 42.0 | 84 | 1.3764 | -0.0644 | 1.3767 | 1.1733 |
|
95 |
+
| 0.1885 | 43.0 | 86 | 1.4507 | -0.0755 | 1.4510 | 1.2046 |
|
96 |
+
| 0.1885 | 44.0 | 88 | 1.7247 | -0.0723 | 1.7249 | 1.3134 |
|
97 |
+
| 0.1315 | 45.0 | 90 | 1.4254 | -0.0527 | 1.4258 | 1.1941 |
|
98 |
+
| 0.1315 | 46.0 | 92 | 1.3033 | -0.0232 | 1.3036 | 1.1418 |
|
99 |
+
| 0.1315 | 47.0 | 94 | 1.3636 | -0.0364 | 1.3639 | 1.1679 |
|
100 |
+
| 0.1315 | 48.0 | 96 | 1.3356 | -0.0357 | 1.3359 | 1.1558 |
|
101 |
+
| 0.1315 | 49.0 | 98 | 1.4280 | -0.0507 | 1.4282 | 1.1951 |
|
102 |
+
| 0.1111 | 50.0 | 100 | 1.4952 | -0.0803 | 1.4955 | 1.2229 |
|
103 |
+
| 0.1111 | 51.0 | 102 | 1.4609 | -0.0782 | 1.4612 | 1.2088 |
|
104 |
+
| 0.1111 | 52.0 | 104 | 1.3766 | -0.0958 | 1.3769 | 1.1734 |
|
105 |
+
| 0.1111 | 53.0 | 106 | 1.3836 | -0.0766 | 1.3838 | 1.1764 |
|
106 |
+
| 0.1111 | 54.0 | 108 | 1.4240 | -0.0730 | 1.4242 | 1.1934 |
|
107 |
+
| 0.1028 | 55.0 | 110 | 1.5048 | -0.0779 | 1.5049 | 1.2267 |
|
108 |
+
| 0.1028 | 56.0 | 112 | 1.4158 | -0.0708 | 1.4160 | 1.1900 |
|
109 |
+
| 0.1028 | 57.0 | 114 | 1.4916 | -0.0688 | 1.4917 | 1.2214 |
|
110 |
+
| 0.1028 | 58.0 | 116 | 1.4316 | -0.0607 | 1.4318 | 1.1966 |
|
111 |
+
| 0.1028 | 59.0 | 118 | 1.4572 | -0.0578 | 1.4573 | 1.2072 |
|
112 |
+
| 0.0887 | 60.0 | 120 | 1.3877 | -0.0395 | 1.3879 | 1.1781 |
|
113 |
+
| 0.0887 | 61.0 | 122 | 1.3899 | -0.0467 | 1.3901 | 1.1790 |
|
114 |
+
| 0.0887 | 62.0 | 124 | 1.4124 | -0.0426 | 1.4127 | 1.1886 |
|
115 |
+
| 0.0887 | 63.0 | 126 | 1.3312 | -0.0644 | 1.3315 | 1.1539 |
|
116 |
+
| 0.0887 | 64.0 | 128 | 1.4083 | -0.0439 | 1.4086 | 1.1868 |
|
117 |
+
| 0.0708 | 65.0 | 130 | 1.4874 | -0.0502 | 1.4877 | 1.2197 |
|
118 |
+
| 0.0708 | 66.0 | 132 | 1.4187 | -0.0635 | 1.4190 | 1.1912 |
|
119 |
+
| 0.0708 | 67.0 | 134 | 1.5010 | -0.0547 | 1.5013 | 1.2253 |
|
120 |
+
| 0.0708 | 68.0 | 136 | 1.6029 | -0.0889 | 1.6032 | 1.2662 |
|
121 |
+
| 0.0708 | 69.0 | 138 | 1.4475 | -0.1025 | 1.4479 | 1.2033 |
|
122 |
+
| 0.0716 | 70.0 | 140 | 1.4358 | -0.1056 | 1.4363 | 1.1984 |
|
123 |
+
| 0.0716 | 71.0 | 142 | 1.5800 | -0.0839 | 1.5804 | 1.2571 |
|
124 |
+
| 0.0716 | 72.0 | 144 | 1.6272 | -0.0918 | 1.6275 | 1.2757 |
|
125 |
+
| 0.0716 | 73.0 | 146 | 1.4703 | -0.0880 | 1.4707 | 1.2127 |
|
126 |
+
| 0.0716 | 74.0 | 148 | 1.4363 | -0.0814 | 1.4367 | 1.1986 |
|
127 |
+
| 0.0699 | 75.0 | 150 | 1.5460 | -0.0866 | 1.5463 | 1.2435 |
|
128 |
+
| 0.0699 | 76.0 | 152 | 1.5505 | -0.0863 | 1.5508 | 1.2453 |
|
129 |
+
| 0.0699 | 77.0 | 154 | 1.4169 | -0.0670 | 1.4174 | 1.1905 |
|
130 |
+
| 0.0699 | 78.0 | 156 | 1.3448 | -0.0726 | 1.3453 | 1.1599 |
|
131 |
+
| 0.0699 | 79.0 | 158 | 1.3791 | -0.0797 | 1.3796 | 1.1746 |
|
132 |
+
| 0.0677 | 80.0 | 160 | 1.5306 | -0.0710 | 1.5309 | 1.2373 |
|
133 |
+
| 0.0677 | 81.0 | 162 | 1.5896 | -0.0796 | 1.5898 | 1.2609 |
|
134 |
+
| 0.0677 | 82.0 | 164 | 1.5151 | -0.0796 | 1.5154 | 1.2310 |
|
135 |
+
| 0.0677 | 83.0 | 166 | 1.4331 | -0.0691 | 1.4335 | 1.1973 |
|
136 |
+
| 0.0677 | 84.0 | 168 | 1.4458 | -0.0642 | 1.4463 | 1.2026 |
|
137 |
+
| 0.0605 | 85.0 | 170 | 1.4730 | -0.0596 | 1.4734 | 1.2139 |
|
138 |
+
| 0.0605 | 86.0 | 172 | 1.4367 | -0.0647 | 1.4371 | 1.1988 |
|
139 |
+
| 0.0605 | 87.0 | 174 | 1.3804 | -0.0774 | 1.3809 | 1.1751 |
|
140 |
+
| 0.0605 | 88.0 | 176 | 1.3941 | -0.0742 | 1.3945 | 1.1809 |
|
141 |
+
| 0.0605 | 89.0 | 178 | 1.4419 | -0.0652 | 1.4423 | 1.2010 |
|
142 |
+
| 0.0639 | 90.0 | 180 | 1.4717 | -0.0652 | 1.4720 | 1.2133 |
|
143 |
+
| 0.0639 | 91.0 | 182 | 1.4858 | -0.0451 | 1.4862 | 1.2191 |
|
144 |
+
| 0.0639 | 92.0 | 184 | 1.4412 | -0.0713 | 1.4416 | 1.2007 |
|
145 |
+
| 0.0639 | 93.0 | 186 | 1.4027 | -0.0522 | 1.4031 | 1.1845 |
|
146 |
+
| 0.0639 | 94.0 | 188 | 1.4078 | -0.0522 | 1.4083 | 1.1867 |
|
147 |
+
| 0.0601 | 95.0 | 190 | 1.4289 | -0.0517 | 1.4293 | 1.1955 |
|
148 |
+
| 0.0601 | 96.0 | 192 | 1.4334 | -0.0532 | 1.4338 | 1.1974 |
|
149 |
+
| 0.0601 | 97.0 | 194 | 1.4532 | -0.0610 | 1.4536 | 1.2057 |
|
150 |
+
| 0.0601 | 98.0 | 196 | 1.4735 | -0.0683 | 1.4739 | 1.2140 |
|
151 |
+
| 0.0601 | 99.0 | 198 | 1.4854 | -0.0725 | 1.4858 | 1.2189 |
|
152 |
+
| 0.058 | 100.0 | 200 | 1.4882 | -0.0698 | 1.4885 | 1.2201 |
|
153 |
|
154 |
|
155 |
### Framework versions
|