ASAP_FineTuningBERT_AugV5_k2_task1_organization_fold1

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4882
  • Qwk: -0.0698
  • Mse: 1.4885
  • Rmse: 1.2201

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 10.4698 -0.0007 10.4674 3.2353
No log 2.0 4 8.1315 0.0 8.1297 2.8513
No log 3.0 6 6.6203 0.0 6.6185 2.5727
No log 4.0 8 5.1594 0.0397 5.1581 2.2711
5.2619 5.0 10 4.2139 0.0204 4.2128 2.0525
5.2619 6.0 12 3.3484 0.0 3.3476 1.8296
5.2619 7.0 14 2.4695 0.0335 2.4690 1.5713
5.2619 8.0 16 2.4274 0.0165 2.4268 1.5578
5.2619 9.0 18 2.0689 -0.0045 2.0685 1.4382
2.1268 10.0 20 1.4960 0.0315 1.4959 1.2231
2.1268 11.0 22 1.4326 0.0106 1.4326 1.1969
2.1268 12.0 24 1.5562 0.0211 1.5563 1.2475
2.1268 13.0 26 1.4471 0.0 1.4472 1.2030
2.1268 14.0 28 1.3652 0.0 1.3653 1.1685
1.7632 15.0 30 1.3694 0.0 1.3695 1.1703
1.7632 16.0 32 1.3967 0.0 1.3969 1.1819
1.7632 17.0 34 1.3075 0.0 1.3077 1.1435
1.7632 18.0 36 1.0959 0.0 1.0962 1.0470
1.7632 19.0 38 1.2807 0.0310 1.2809 1.1318
1.2911 20.0 40 1.2929 0.0268 1.2930 1.1371
1.2911 21.0 42 1.0497 0.0845 1.0498 1.0246
1.2911 22.0 44 0.9889 0.1424 0.9891 0.9945
1.2911 23.0 46 1.4049 0.0318 1.4049 1.1853
1.2911 24.0 48 1.4490 0.0275 1.4489 1.2037
0.7404 25.0 50 1.0279 0.0799 1.0280 1.0139
0.7404 26.0 52 1.1402 0.0429 1.1403 1.0678
0.7404 27.0 54 1.1346 0.0409 1.1347 1.0652
0.7404 28.0 56 1.2277 0.0135 1.2277 1.1080
0.7404 29.0 58 1.3712 -0.0413 1.3712 1.1710
0.3592 30.0 60 1.4526 -0.0638 1.4526 1.2052
0.3592 31.0 62 1.3467 -0.0549 1.3468 1.1605
0.3592 32.0 64 1.6744 -0.1048 1.6743 1.2939
0.3592 33.0 66 1.3546 -0.0932 1.3548 1.1639
0.3592 34.0 68 1.5503 -0.1470 1.5503 1.2451
0.2171 35.0 70 1.9329 -0.1356 1.9329 1.3903
0.2171 36.0 72 1.5089 -0.1392 1.5091 1.2284
0.2171 37.0 74 1.5246 -0.1416 1.5249 1.2349
0.2171 38.0 76 1.7712 -0.1316 1.7713 1.3309
0.2171 39.0 78 1.4046 -0.1219 1.4050 1.1853
0.1885 40.0 80 1.3810 -0.0741 1.3813 1.1753
0.1885 41.0 82 1.5772 -0.0926 1.5773 1.2559
0.1885 42.0 84 1.3764 -0.0644 1.3767 1.1733
0.1885 43.0 86 1.4507 -0.0755 1.4510 1.2046
0.1885 44.0 88 1.7247 -0.0723 1.7249 1.3134
0.1315 45.0 90 1.4254 -0.0527 1.4258 1.1941
0.1315 46.0 92 1.3033 -0.0232 1.3036 1.1418
0.1315 47.0 94 1.3636 -0.0364 1.3639 1.1679
0.1315 48.0 96 1.3356 -0.0357 1.3359 1.1558
0.1315 49.0 98 1.4280 -0.0507 1.4282 1.1951
0.1111 50.0 100 1.4952 -0.0803 1.4955 1.2229
0.1111 51.0 102 1.4609 -0.0782 1.4612 1.2088
0.1111 52.0 104 1.3766 -0.0958 1.3769 1.1734
0.1111 53.0 106 1.3836 -0.0766 1.3838 1.1764
0.1111 54.0 108 1.4240 -0.0730 1.4242 1.1934
0.1028 55.0 110 1.5048 -0.0779 1.5049 1.2267
0.1028 56.0 112 1.4158 -0.0708 1.4160 1.1900
0.1028 57.0 114 1.4916 -0.0688 1.4917 1.2214
0.1028 58.0 116 1.4316 -0.0607 1.4318 1.1966
0.1028 59.0 118 1.4572 -0.0578 1.4573 1.2072
0.0887 60.0 120 1.3877 -0.0395 1.3879 1.1781
0.0887 61.0 122 1.3899 -0.0467 1.3901 1.1790
0.0887 62.0 124 1.4124 -0.0426 1.4127 1.1886
0.0887 63.0 126 1.3312 -0.0644 1.3315 1.1539
0.0887 64.0 128 1.4083 -0.0439 1.4086 1.1868
0.0708 65.0 130 1.4874 -0.0502 1.4877 1.2197
0.0708 66.0 132 1.4187 -0.0635 1.4190 1.1912
0.0708 67.0 134 1.5010 -0.0547 1.5013 1.2253
0.0708 68.0 136 1.6029 -0.0889 1.6032 1.2662
0.0708 69.0 138 1.4475 -0.1025 1.4479 1.2033
0.0716 70.0 140 1.4358 -0.1056 1.4363 1.1984
0.0716 71.0 142 1.5800 -0.0839 1.5804 1.2571
0.0716 72.0 144 1.6272 -0.0918 1.6275 1.2757
0.0716 73.0 146 1.4703 -0.0880 1.4707 1.2127
0.0716 74.0 148 1.4363 -0.0814 1.4367 1.1986
0.0699 75.0 150 1.5460 -0.0866 1.5463 1.2435
0.0699 76.0 152 1.5505 -0.0863 1.5508 1.2453
0.0699 77.0 154 1.4169 -0.0670 1.4174 1.1905
0.0699 78.0 156 1.3448 -0.0726 1.3453 1.1599
0.0699 79.0 158 1.3791 -0.0797 1.3796 1.1746
0.0677 80.0 160 1.5306 -0.0710 1.5309 1.2373
0.0677 81.0 162 1.5896 -0.0796 1.5898 1.2609
0.0677 82.0 164 1.5151 -0.0796 1.5154 1.2310
0.0677 83.0 166 1.4331 -0.0691 1.4335 1.1973
0.0677 84.0 168 1.4458 -0.0642 1.4463 1.2026
0.0605 85.0 170 1.4730 -0.0596 1.4734 1.2139
0.0605 86.0 172 1.4367 -0.0647 1.4371 1.1988
0.0605 87.0 174 1.3804 -0.0774 1.3809 1.1751
0.0605 88.0 176 1.3941 -0.0742 1.3945 1.1809
0.0605 89.0 178 1.4419 -0.0652 1.4423 1.2010
0.0639 90.0 180 1.4717 -0.0652 1.4720 1.2133
0.0639 91.0 182 1.4858 -0.0451 1.4862 1.2191
0.0639 92.0 184 1.4412 -0.0713 1.4416 1.2007
0.0639 93.0 186 1.4027 -0.0522 1.4031 1.1845
0.0639 94.0 188 1.4078 -0.0522 1.4083 1.1867
0.0601 95.0 190 1.4289 -0.0517 1.4293 1.1955
0.0601 96.0 192 1.4334 -0.0532 1.4338 1.1974
0.0601 97.0 194 1.4532 -0.0610 1.4536 1.2057
0.0601 98.0 196 1.4735 -0.0683 1.4739 1.2140
0.0601 99.0 198 1.4854 -0.0725 1.4858 1.2189
0.058 100.0 200 1.4882 -0.0698 1.4885 1.2201

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for genki10/ASAP_FineTuningBERT_AugV5_k2_task1_organization_fold1

Finetuned
(2421)
this model