End of training
Browse files
README.md
CHANGED
@@ -5,21 +5,21 @@ base_model: bert-base-uncased
|
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
model-index:
|
8 |
-
- name:
|
9 |
results: []
|
10 |
---
|
11 |
|
12 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
should probably proofread and complete it, then remove this comment. -->
|
14 |
|
15 |
-
#
|
16 |
|
17 |
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss:
|
20 |
-
- Qwk: 0.
|
21 |
-
- Mse:
|
22 |
-
- Rmse:
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -50,56 +50,106 @@ The following hyperparameters were used during training:
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|
|
53 |
-
| No log |
|
54 |
-
| No log |
|
55 |
-
| No log |
|
56 |
-
| No log |
|
57 |
-
|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
|
|
61 |
-
|
|
62 |
-
| 2.
|
63 |
-
| 2.
|
64 |
-
| 2.
|
65 |
-
| 2.
|
66 |
-
| 2.
|
67 |
-
| 1.
|
68 |
-
| 1.
|
69 |
-
| 1.
|
70 |
-
| 1.
|
71 |
-
| 1.
|
72 |
-
| 1.
|
73 |
-
| 1.
|
74 |
-
| 1.
|
75 |
-
| 1.
|
76 |
-
| 1.
|
77 |
-
|
|
78 |
-
|
|
79 |
-
|
|
80 |
-
|
|
81 |
-
|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
|
105 |
### Framework versions
|
|
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
model-index:
|
8 |
+
- name: ASAP_FineTuningBERT_AugV5_k2_task1_organization_fold0
|
9 |
results: []
|
10 |
---
|
11 |
|
12 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
should probably proofread and complete it, then remove this comment. -->
|
14 |
|
15 |
+
# ASAP_FineTuningBERT_AugV5_k2_task1_organization_fold0
|
16 |
|
17 |
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 2.5672
|
20 |
+
- Qwk: 0.1569
|
21 |
+
- Mse: 2.5672
|
22 |
+
- Rmse: 1.6023
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|
|
53 |
+
| No log | 1.0 | 2 | 8.9837 | 0.0 | 8.9837 | 2.9973 |
|
54 |
+
| No log | 2.0 | 4 | 7.5886 | 0.0 | 7.5886 | 2.7547 |
|
55 |
+
| No log | 3.0 | 6 | 6.7933 | 0.0 | 6.7933 | 2.6064 |
|
56 |
+
| No log | 4.0 | 8 | 5.9019 | 0.0334 | 5.9019 | 2.4294 |
|
57 |
+
| 4.9726 | 5.0 | 10 | 5.0055 | 0.0115 | 5.0055 | 2.2373 |
|
58 |
+
| 4.9726 | 6.0 | 12 | 4.2886 | 0.0039 | 4.2886 | 2.0709 |
|
59 |
+
| 4.9726 | 7.0 | 14 | 3.4374 | 0.0 | 3.4374 | 1.8540 |
|
60 |
+
| 4.9726 | 8.0 | 16 | 2.7480 | 0.0 | 2.7480 | 1.6577 |
|
61 |
+
| 4.9726 | 9.0 | 18 | 2.1294 | 0.0689 | 2.1294 | 1.4592 |
|
62 |
+
| 2.3566 | 10.0 | 20 | 1.9136 | 0.0664 | 1.9136 | 1.3833 |
|
63 |
+
| 2.3566 | 11.0 | 22 | 1.6575 | 0.0316 | 1.6575 | 1.2875 |
|
64 |
+
| 2.3566 | 12.0 | 24 | 1.5791 | 0.0316 | 1.5791 | 1.2566 |
|
65 |
+
| 2.3566 | 13.0 | 26 | 1.5508 | 0.0316 | 1.5508 | 1.2453 |
|
66 |
+
| 2.3566 | 14.0 | 28 | 2.2890 | 0.1589 | 2.2890 | 1.5129 |
|
67 |
+
| 1.7933 | 15.0 | 30 | 2.1373 | 0.1624 | 2.1373 | 1.4619 |
|
68 |
+
| 1.7933 | 16.0 | 32 | 1.5227 | 0.0575 | 1.5227 | 1.2340 |
|
69 |
+
| 1.7933 | 17.0 | 34 | 1.7374 | 0.1078 | 1.7374 | 1.3181 |
|
70 |
+
| 1.7933 | 18.0 | 36 | 2.0888 | 0.1489 | 2.0888 | 1.4453 |
|
71 |
+
| 1.7933 | 19.0 | 38 | 1.7404 | 0.1411 | 1.7404 | 1.3192 |
|
72 |
+
| 1.5013 | 20.0 | 40 | 1.8295 | 0.1288 | 1.8295 | 1.3526 |
|
73 |
+
| 1.5013 | 21.0 | 42 | 2.7252 | 0.0775 | 2.7252 | 1.6508 |
|
74 |
+
| 1.5013 | 22.0 | 44 | 2.2863 | 0.1148 | 2.2863 | 1.5121 |
|
75 |
+
| 1.5013 | 23.0 | 46 | 1.9034 | 0.1520 | 1.9034 | 1.3796 |
|
76 |
+
| 1.5013 | 24.0 | 48 | 2.4564 | 0.1052 | 2.4564 | 1.5673 |
|
77 |
+
| 1.0621 | 25.0 | 50 | 2.3437 | 0.1033 | 2.3437 | 1.5309 |
|
78 |
+
| 1.0621 | 26.0 | 52 | 2.8176 | 0.0791 | 2.8176 | 1.6786 |
|
79 |
+
| 1.0621 | 27.0 | 54 | 2.2993 | 0.1371 | 2.2993 | 1.5164 |
|
80 |
+
| 1.0621 | 28.0 | 56 | 3.3617 | 0.0554 | 3.3617 | 1.8335 |
|
81 |
+
| 1.0621 | 29.0 | 58 | 2.8583 | 0.0866 | 2.8583 | 1.6907 |
|
82 |
+
| 0.5724 | 30.0 | 60 | 2.0071 | 0.1854 | 2.0071 | 1.4167 |
|
83 |
+
| 0.5724 | 31.0 | 62 | 2.4842 | 0.1259 | 2.4842 | 1.5762 |
|
84 |
+
| 0.5724 | 32.0 | 64 | 3.6091 | 0.0536 | 3.6091 | 1.8998 |
|
85 |
+
| 0.5724 | 33.0 | 66 | 3.5167 | 0.0628 | 3.5167 | 1.8753 |
|
86 |
+
| 0.5724 | 34.0 | 68 | 2.4939 | 0.1330 | 2.4939 | 1.5792 |
|
87 |
+
| 0.3724 | 35.0 | 70 | 3.0914 | 0.0849 | 3.0914 | 1.7582 |
|
88 |
+
| 0.3724 | 36.0 | 72 | 2.7255 | 0.1191 | 2.7255 | 1.6509 |
|
89 |
+
| 0.3724 | 37.0 | 74 | 2.7631 | 0.1198 | 2.7631 | 1.6622 |
|
90 |
+
| 0.3724 | 38.0 | 76 | 2.6358 | 0.1352 | 2.6358 | 1.6235 |
|
91 |
+
| 0.3724 | 39.0 | 78 | 3.2364 | 0.0837 | 3.2364 | 1.7990 |
|
92 |
+
| 0.254 | 40.0 | 80 | 3.0060 | 0.0967 | 3.0059 | 1.7338 |
|
93 |
+
| 0.254 | 41.0 | 82 | 2.7999 | 0.1069 | 2.7999 | 1.6733 |
|
94 |
+
| 0.254 | 42.0 | 84 | 3.1689 | 0.0883 | 3.1689 | 1.7801 |
|
95 |
+
| 0.254 | 43.0 | 86 | 3.2822 | 0.0836 | 3.2822 | 1.8117 |
|
96 |
+
| 0.254 | 44.0 | 88 | 3.0970 | 0.0885 | 3.0970 | 1.7598 |
|
97 |
+
| 0.1736 | 45.0 | 90 | 2.5817 | 0.1349 | 2.5817 | 1.6068 |
|
98 |
+
| 0.1736 | 46.0 | 92 | 2.9280 | 0.1108 | 2.9280 | 1.7111 |
|
99 |
+
| 0.1736 | 47.0 | 94 | 2.9410 | 0.1154 | 2.9410 | 1.7149 |
|
100 |
+
| 0.1736 | 48.0 | 96 | 2.3168 | 0.1684 | 2.3168 | 1.5221 |
|
101 |
+
| 0.1736 | 49.0 | 98 | 2.4283 | 0.1632 | 2.4283 | 1.5583 |
|
102 |
+
| 0.1486 | 50.0 | 100 | 3.1574 | 0.1084 | 3.1574 | 1.7769 |
|
103 |
+
| 0.1486 | 51.0 | 102 | 2.9698 | 0.1068 | 2.9698 | 1.7233 |
|
104 |
+
| 0.1486 | 52.0 | 104 | 2.5049 | 0.1489 | 2.5049 | 1.5827 |
|
105 |
+
| 0.1486 | 53.0 | 106 | 3.1017 | 0.0877 | 3.1017 | 1.7612 |
|
106 |
+
| 0.1486 | 54.0 | 108 | 3.0418 | 0.0908 | 3.0418 | 1.7441 |
|
107 |
+
| 0.1233 | 55.0 | 110 | 2.4456 | 0.1517 | 2.4456 | 1.5639 |
|
108 |
+
| 0.1233 | 56.0 | 112 | 2.8118 | 0.1073 | 2.8118 | 1.6769 |
|
109 |
+
| 0.1233 | 57.0 | 114 | 2.7787 | 0.1210 | 2.7787 | 1.6669 |
|
110 |
+
| 0.1233 | 58.0 | 116 | 2.7518 | 0.1227 | 2.7518 | 1.6589 |
|
111 |
+
| 0.1233 | 59.0 | 118 | 2.7771 | 0.1209 | 2.7771 | 1.6665 |
|
112 |
+
| 0.1054 | 60.0 | 120 | 2.4018 | 0.1516 | 2.4018 | 1.5498 |
|
113 |
+
| 0.1054 | 61.0 | 122 | 2.5651 | 0.1327 | 2.5651 | 1.6016 |
|
114 |
+
| 0.1054 | 62.0 | 124 | 2.4406 | 0.1493 | 2.4406 | 1.5622 |
|
115 |
+
| 0.1054 | 63.0 | 126 | 2.8577 | 0.1144 | 2.8577 | 1.6905 |
|
116 |
+
| 0.1054 | 64.0 | 128 | 2.5507 | 0.1318 | 2.5507 | 1.5971 |
|
117 |
+
| 0.0981 | 65.0 | 130 | 2.0764 | 0.1847 | 2.0764 | 1.4410 |
|
118 |
+
| 0.0981 | 66.0 | 132 | 2.3426 | 0.1459 | 2.3426 | 1.5306 |
|
119 |
+
| 0.0981 | 67.0 | 134 | 3.0805 | 0.0948 | 3.0805 | 1.7551 |
|
120 |
+
| 0.0981 | 68.0 | 136 | 3.2191 | 0.0815 | 3.2191 | 1.7942 |
|
121 |
+
| 0.0981 | 69.0 | 138 | 2.6300 | 0.1184 | 2.6300 | 1.6217 |
|
122 |
+
| 0.1122 | 70.0 | 140 | 1.9715 | 0.2115 | 1.9715 | 1.4041 |
|
123 |
+
| 0.1122 | 71.0 | 142 | 2.0239 | 0.1938 | 2.0239 | 1.4226 |
|
124 |
+
| 0.1122 | 72.0 | 144 | 2.5947 | 0.1181 | 2.5947 | 1.6108 |
|
125 |
+
| 0.1122 | 73.0 | 146 | 2.8110 | 0.1127 | 2.8110 | 1.6766 |
|
126 |
+
| 0.1122 | 74.0 | 148 | 2.5182 | 0.1347 | 2.5182 | 1.5869 |
|
127 |
+
| 0.0899 | 75.0 | 150 | 2.6086 | 0.1365 | 2.6086 | 1.6151 |
|
128 |
+
| 0.0899 | 76.0 | 152 | 2.9564 | 0.1153 | 2.9564 | 1.7194 |
|
129 |
+
| 0.0899 | 77.0 | 154 | 2.7835 | 0.1342 | 2.7835 | 1.6684 |
|
130 |
+
| 0.0899 | 78.0 | 156 | 2.5104 | 0.1472 | 2.5104 | 1.5844 |
|
131 |
+
| 0.0899 | 79.0 | 158 | 2.6229 | 0.1391 | 2.6229 | 1.6195 |
|
132 |
+
| 0.0772 | 80.0 | 160 | 2.6771 | 0.1336 | 2.6771 | 1.6362 |
|
133 |
+
| 0.0772 | 81.0 | 162 | 2.6291 | 0.1312 | 2.6291 | 1.6214 |
|
134 |
+
| 0.0772 | 82.0 | 164 | 2.4204 | 0.1493 | 2.4204 | 1.5558 |
|
135 |
+
| 0.0772 | 83.0 | 166 | 2.3233 | 0.1581 | 2.3233 | 1.5242 |
|
136 |
+
| 0.0772 | 84.0 | 168 | 2.3747 | 0.1514 | 2.3747 | 1.5410 |
|
137 |
+
| 0.0771 | 85.0 | 170 | 2.5471 | 0.1405 | 2.5471 | 1.5960 |
|
138 |
+
| 0.0771 | 86.0 | 172 | 2.6281 | 0.1360 | 2.6281 | 1.6211 |
|
139 |
+
| 0.0771 | 87.0 | 174 | 2.5029 | 0.1520 | 2.5029 | 1.5821 |
|
140 |
+
| 0.0771 | 88.0 | 176 | 2.4189 | 0.1629 | 2.4189 | 1.5553 |
|
141 |
+
| 0.0771 | 89.0 | 178 | 2.5380 | 0.1522 | 2.5380 | 1.5931 |
|
142 |
+
| 0.0766 | 90.0 | 180 | 2.7065 | 0.1380 | 2.7065 | 1.6451 |
|
143 |
+
| 0.0766 | 91.0 | 182 | 2.6679 | 0.1351 | 2.6679 | 1.6334 |
|
144 |
+
| 0.0766 | 92.0 | 184 | 2.5639 | 0.1471 | 2.5639 | 1.6012 |
|
145 |
+
| 0.0766 | 93.0 | 186 | 2.5141 | 0.1511 | 2.5141 | 1.5856 |
|
146 |
+
| 0.0766 | 94.0 | 188 | 2.5017 | 0.1513 | 2.5017 | 1.5817 |
|
147 |
+
| 0.0521 | 95.0 | 190 | 2.5129 | 0.1508 | 2.5129 | 1.5852 |
|
148 |
+
| 0.0521 | 96.0 | 192 | 2.4979 | 0.1555 | 2.4979 | 1.5805 |
|
149 |
+
| 0.0521 | 97.0 | 194 | 2.4822 | 0.1628 | 2.4822 | 1.5755 |
|
150 |
+
| 0.0521 | 98.0 | 196 | 2.5032 | 0.1601 | 2.5032 | 1.5822 |
|
151 |
+
| 0.0521 | 99.0 | 198 | 2.5438 | 0.1584 | 2.5438 | 1.5949 |
|
152 |
+
| 0.0576 | 100.0 | 200 | 2.5672 | 0.1569 | 2.5672 | 1.6023 |
|
153 |
|
154 |
|
155 |
### Framework versions
|