ASAP_FineTuningBERT_AugV5_k1_task1_organization_fold4

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8594
  • Qwk: 0.3031
  • Mse: 0.8594
  • Rmse: 0.9270

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 2.0 2 9.7069 0.0018 9.7069 3.1156
No log 4.0 4 8.0136 0.0018 8.0136 2.8308
No log 6.0 6 6.4826 0.0018 6.4826 2.5461
No log 8.0 8 5.2953 0.0408 5.2953 2.3011
5.0186 10.0 10 4.1384 0.0118 4.1384 2.0343
5.0186 12.0 12 3.5945 0.0118 3.5945 1.8959
5.0186 14.0 14 2.7705 0.0040 2.7705 1.6645
5.0186 16.0 16 2.2841 0.1614 2.2841 1.5113
5.0186 18.0 18 2.1905 0.1047 2.1905 1.4800
2.1604 20.0 20 1.6308 0.0420 1.6308 1.2770
2.1604 22.0 22 1.5246 0.0420 1.5246 1.2347
2.1604 24.0 24 1.3066 0.0316 1.3066 1.1431
2.1604 26.0 26 1.3203 0.0420 1.3203 1.1490
2.1604 28.0 28 1.4331 0.0420 1.4331 1.1971
1.7805 30.0 30 1.6501 0.0342 1.6501 1.2846
1.7805 32.0 32 1.6684 0.0381 1.6684 1.2917
1.7805 34.0 34 1.4198 0.0445 1.4198 1.1915
1.7805 36.0 36 1.4007 0.0456 1.4007 1.1835
1.7805 38.0 38 1.3889 0.0656 1.3889 1.1785
1.4513 40.0 40 1.3126 0.0697 1.3126 1.1457
1.4513 42.0 42 1.1941 0.0571 1.1941 1.0927
1.4513 44.0 44 1.1476 0.0748 1.1476 1.0713
1.4513 46.0 46 1.0208 0.1117 1.0208 1.0104
1.4513 48.0 48 1.2392 0.1751 1.2392 1.1132
0.8434 50.0 50 1.3578 0.1877 1.3578 1.1652
0.8434 52.0 52 1.0215 0.2745 1.0215 1.0107
0.8434 54.0 54 1.0940 0.2982 1.0940 1.0459
0.8434 56.0 56 0.9441 0.3156 0.9441 0.9717
0.8434 58.0 58 1.0797 0.3110 1.0797 1.0391
0.4526 60.0 60 0.9811 0.3059 0.9811 0.9905
0.4526 62.0 62 0.9059 0.3465 0.9059 0.9518
0.4526 64.0 64 0.9486 0.3205 0.9486 0.9740
0.4526 66.0 66 0.7783 0.3387 0.7783 0.8822
0.4526 68.0 68 0.8113 0.3253 0.8113 0.9007
0.2944 70.0 70 1.0263 0.3179 1.0263 1.0130
0.2944 72.0 72 0.8863 0.3409 0.8863 0.9414
0.2944 74.0 74 0.7964 0.3267 0.7964 0.8924
0.2944 76.0 76 0.8521 0.3294 0.8521 0.9231
0.2944 78.0 78 0.9574 0.3250 0.9574 0.9784
0.211 80.0 80 0.8926 0.3277 0.8926 0.9448
0.211 82.0 82 0.8061 0.3094 0.8061 0.8979
0.211 84.0 84 0.8071 0.3123 0.8071 0.8984
0.211 86.0 86 0.8848 0.3151 0.8848 0.9407
0.211 88.0 88 0.9816 0.3239 0.9816 0.9908
0.1858 90.0 90 0.9544 0.3360 0.9544 0.9769
0.1858 92.0 92 0.8603 0.3031 0.8603 0.9275
0.1858 94.0 94 0.8166 0.3222 0.8166 0.9037
0.1858 96.0 96 0.8203 0.3250 0.8203 0.9057
0.1858 98.0 98 0.8426 0.3140 0.8426 0.9179
0.1627 100.0 100 0.8594 0.3031 0.8594 0.9270

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
26
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for genki10/ASAP_FineTuningBERT_AugV5_k1_task1_organization_fold4

Finetuned
(2422)
this model