ASAP_FineTuningBERT_AugV5_k1_task1_organization_fold1

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6869
  • Qwk: -0.0861
  • Mse: 2.6868
  • Rmse: 1.6392

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 2.0 2 9.5798 0.0 9.5776 3.0948
No log 4.0 4 7.9439 0.0 7.9420 2.8182
No log 6.0 6 6.4641 0.0 6.4625 2.5422
No log 8.0 8 5.2599 0.0559 5.2587 2.2932
4.9982 10.0 10 4.1481 0.0079 4.1471 2.0364
4.9982 12.0 12 3.5500 0.0040 3.5492 1.8839
4.9982 14.0 14 2.8411 0.0 2.8405 1.6854
4.9982 16.0 16 2.3024 0.0767 2.3021 1.5173
4.9982 18.0 18 2.3574 0.0732 2.3571 1.5353
2.1743 20.0 20 1.7681 0.0737 1.7680 1.3297
2.1743 22.0 22 1.9535 0.0785 1.9534 1.3976
2.1743 24.0 24 2.1043 0.0832 2.1042 1.4506
2.1743 26.0 26 1.6590 0.0559 1.6591 1.2881
2.1743 28.0 28 1.9849 -0.0140 1.9849 1.4089
1.5392 30.0 30 1.6709 0.0481 1.6711 1.2927
1.5392 32.0 32 1.7945 -0.0321 1.7946 1.3396
1.5392 34.0 34 1.8907 -0.0686 1.8907 1.3750
1.5392 36.0 36 1.6602 -0.1049 1.6604 1.2886
1.5392 38.0 38 2.2785 -0.0910 2.2784 1.5094
0.755 40.0 40 2.2639 -0.1086 2.2638 1.5046
0.755 42.0 42 2.4028 -0.1004 2.4026 1.5500
0.755 44.0 44 2.5434 -0.0962 2.5431 1.5947
0.755 46.0 46 2.6992 -0.0921 2.6989 1.6428
0.755 48.0 48 2.4887 -0.1009 2.4886 1.5775
0.2912 50.0 50 2.7323 -0.0885 2.7321 1.6529
0.2912 52.0 52 2.3700 -0.1372 2.3701 1.5395
0.2912 54.0 54 2.8160 -0.0862 2.8158 1.6780
0.2912 56.0 56 2.8669 -0.0842 2.8668 1.6932
0.2912 58.0 58 3.1945 -0.1022 3.1942 1.7872
0.1731 60.0 60 2.4518 -0.1396 2.4519 1.5659
0.1731 62.0 62 2.3844 -0.1415 2.3846 1.5442
0.1731 64.0 64 3.1398 -0.0998 3.1395 1.7719
0.1731 66.0 66 3.2908 -0.0909 3.2904 1.8140
0.1731 68.0 68 2.6689 -0.0892 2.6689 1.6337
0.1508 70.0 70 2.1683 -0.1689 2.1687 1.4726
0.1508 72.0 72 2.3213 -0.1308 2.3215 1.5236
0.1508 74.0 74 2.9226 -0.0855 2.9224 1.7095
0.1508 76.0 76 3.0932 -0.0985 3.0929 1.7587
0.1508 78.0 78 2.7406 -0.0817 2.7405 1.6554
0.1508 80.0 80 2.2736 -0.1348 2.2738 1.5079
0.1508 82.0 82 2.2387 -0.1408 2.2390 1.4963
0.1508 84.0 84 2.5085 -0.0976 2.5086 1.5838
0.1508 86.0 86 2.8004 -0.0813 2.8003 1.6734
0.1508 88.0 88 2.7728 -0.0805 2.7727 1.6652
0.1168 90.0 90 2.6308 -0.0823 2.6308 1.6220
0.1168 92.0 92 2.5054 -0.1084 2.5055 1.5829
0.1168 94.0 94 2.5466 -0.0988 2.5467 1.5958
0.1168 96.0 96 2.6464 -0.0844 2.6464 1.6268
0.1168 98.0 98 2.6876 -0.0888 2.6875 1.6394
0.0866 100.0 100 2.6869 -0.0861 2.6868 1.6392

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
25
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for genki10/ASAP_FineTuningBERT_AugV5_k1_task1_organization_fold1

Finetuned
(2422)
this model