ASAP_FineTuningBERT_AugV5_k10_task1_organization_fold2

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5821
  • Qwk: 0.5834
  • Mse: 0.5823
  • Rmse: 0.7631

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 2.0 2 10.1102 0.0 10.1098 3.1796
No log 4.0 4 8.5153 0.0 8.5150 2.9181
No log 6.0 6 6.9130 0.0 6.9126 2.6292
No log 8.0 8 5.4748 0.0330 5.4746 2.3398
9.0382 10.0 10 4.4633 0.0039 4.4632 2.1126
9.0382 12.0 12 3.6149 0.0 3.6149 1.9013
9.0382 14.0 14 2.9219 0.0 2.9219 1.7093
9.0382 16.0 16 2.3959 0.0965 2.3959 1.5479
9.0382 18.0 18 1.9642 0.0539 1.9643 1.4015
4.332 20.0 20 1.6434 0.0334 1.6435 1.2820
4.332 22.0 22 1.4010 0.0334 1.4011 1.1837
4.332 24.0 24 1.1567 0.0307 1.1570 1.0756
4.332 26.0 26 1.0073 0.0437 1.0075 1.0038
4.332 28.0 28 0.8614 0.2354 0.8616 0.9282
2.2501 30.0 30 0.7297 0.4421 0.7300 0.8544
2.2501 32.0 32 0.6508 0.4824 0.6513 0.8070
2.2501 34.0 34 0.6363 0.4827 0.6366 0.7979
2.2501 36.0 36 0.5677 0.4278 0.5682 0.7538
2.2501 38.0 38 0.5781 0.4109 0.5787 0.7607
1.1902 40.0 40 0.5452 0.4652 0.5456 0.7386
1.1902 42.0 42 0.5406 0.4471 0.5411 0.7356
1.1902 44.0 44 0.5490 0.4776 0.5495 0.7413
1.1902 46.0 46 0.5443 0.5829 0.5448 0.7381
1.1902 48.0 48 0.5611 0.6050 0.5616 0.7494
0.6288 50.0 50 0.5506 0.5916 0.5510 0.7423
0.6288 52.0 52 0.5505 0.5904 0.5509 0.7422
0.6288 54.0 54 0.6214 0.5851 0.6219 0.7886
0.6288 56.0 56 0.5689 0.5814 0.5693 0.7545
0.6288 58.0 58 0.5470 0.5856 0.5473 0.7398
0.3387 60.0 60 0.6808 0.5546 0.6811 0.8253
0.3387 62.0 62 0.6377 0.5669 0.6380 0.7988
0.3387 64.0 64 0.5568 0.5775 0.5570 0.7463
0.3387 66.0 66 0.5775 0.5689 0.5777 0.7601
0.3387 68.0 68 0.6875 0.5494 0.6877 0.8293
0.1982 70.0 70 0.6655 0.5540 0.6657 0.8159
0.1982 72.0 72 0.5663 0.5536 0.5665 0.7527
0.1982 74.0 74 0.5523 0.5651 0.5524 0.7432
0.1982 76.0 76 0.6181 0.5537 0.6182 0.7863
0.1982 78.0 78 0.7374 0.5493 0.7376 0.8588
0.1267 80.0 80 0.6437 0.5732 0.6439 0.8024
0.1267 82.0 82 0.5785 0.5661 0.5787 0.7607
0.1267 84.0 84 0.5934 0.5702 0.5935 0.7704
0.1267 86.0 86 0.6109 0.5710 0.6111 0.7817
0.1267 88.0 88 0.6239 0.5727 0.6241 0.7900
0.0849 90.0 90 0.5956 0.5785 0.5958 0.7719
0.0849 92.0 92 0.5650 0.5675 0.5652 0.7518
0.0849 94.0 94 0.5627 0.5764 0.5628 0.7502
0.0849 96.0 96 0.5699 0.5769 0.5701 0.7550
0.0849 98.0 98 0.5772 0.5813 0.5773 0.7598
0.0726 100.0 100 0.5821 0.5834 0.5823 0.7631

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for genki10/ASAP_FineTuningBERT_AugV5_k10_task1_organization_fold2

Finetuned
(2422)
this model