ASAP_FineTuningBERT_AugV5_k10_task1_organization_fold0

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5805
  • Qwk: 0.6413
  • Mse: 0.5805
  • Rmse: 0.7619

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 2.0 2 8.9334 0.0 8.9334 2.9889
No log 4.0 4 7.7251 0.0 7.7251 2.7794
No log 6.0 6 6.9126 0.0 6.9126 2.6292
No log 8.0 8 6.0855 -0.0067 6.0855 2.4669
8.7869 10.0 10 5.2885 0.0115 5.2885 2.2997
8.7869 12.0 12 4.4876 0.0039 4.4876 2.1184
8.7869 14.0 14 3.8555 0.0 3.8555 1.9635
8.7869 16.0 16 3.1151 0.0 3.1151 1.7650
8.7869 18.0 18 2.4646 0.0902 2.4646 1.5699
4.8367 20.0 20 1.9258 0.0511 1.9258 1.3877
4.8367 22.0 22 1.5573 0.0316 1.5573 1.2479
4.8367 24.0 24 1.2277 0.0316 1.2277 1.1080
4.8367 26.0 26 1.0600 0.0484 1.0600 1.0296
4.8367 28.0 28 0.8888 0.0484 0.8888 0.9428
2.5363 30.0 30 0.7514 0.4218 0.7514 0.8668
2.5363 32.0 32 0.6534 0.4791 0.6534 0.8083
2.5363 34.0 34 0.7060 0.4858 0.7060 0.8402
2.5363 36.0 36 0.5431 0.5111 0.5431 0.7370
2.5363 38.0 38 0.5125 0.4976 0.5125 0.7159
1.2777 40.0 40 0.5039 0.5206 0.5039 0.7099
1.2777 42.0 42 0.5139 0.4642 0.5139 0.7169
1.2777 44.0 44 0.5084 0.5505 0.5084 0.7130
1.2777 46.0 46 0.5008 0.5513 0.5008 0.7077
1.2777 48.0 48 0.4937 0.6186 0.4937 0.7026
0.6754 50.0 50 0.4821 0.5879 0.4821 0.6943
0.6754 52.0 52 0.5527 0.5948 0.5527 0.7434
0.6754 54.0 54 0.5330 0.6053 0.5330 0.7301
0.6754 56.0 56 0.4867 0.6329 0.4867 0.6976
0.6754 58.0 58 0.5515 0.6071 0.5515 0.7426
0.3859 60.0 60 0.5178 0.6378 0.5178 0.7196
0.3859 62.0 62 0.5138 0.6373 0.5138 0.7168
0.3859 64.0 64 0.5630 0.6289 0.5630 0.7503
0.3859 66.0 66 0.5752 0.6292 0.5752 0.7584
0.3859 68.0 68 0.6784 0.5942 0.6784 0.8236
0.191 70.0 70 0.6061 0.6268 0.6061 0.7785
0.191 72.0 72 0.6469 0.6089 0.6469 0.8043
0.191 74.0 74 0.5509 0.6231 0.5509 0.7422
0.191 76.0 76 0.5431 0.6220 0.5431 0.7370
0.191 78.0 78 0.6168 0.6288 0.6168 0.7853
0.1171 80.0 80 0.5948 0.6323 0.5948 0.7712
0.1171 82.0 82 0.6731 0.6193 0.6731 0.8204
0.1171 84.0 84 0.6456 0.6204 0.6456 0.8035
0.1171 86.0 86 0.5760 0.6413 0.5760 0.7590
0.1171 88.0 88 0.5489 0.6397 0.5489 0.7408
0.1069 90.0 90 0.5869 0.6396 0.5869 0.7661
0.1069 92.0 92 0.6605 0.6047 0.6605 0.8127
0.1069 94.0 94 0.6535 0.6093 0.6535 0.8084
0.1069 96.0 96 0.6031 0.6271 0.6031 0.7766
0.1069 98.0 98 0.5848 0.6402 0.5848 0.7647
0.0854 100.0 100 0.5805 0.6413 0.5805 0.7619

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for genki10/ASAP_FineTuningBERT_AugV5_k10_task1_organization_fold0

Finetuned
(2422)
this model