metadata
language:
- en
license: apache-2.0
datasets:
- openbmb/UltraFeedback
pipeline_tag: text-generation
model-index:
- name: SPPO-Llama-3-8B-Instruct-GPM-2B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 60.24
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=general-preference/SPPO-Llama-3-8B-Instruct-GPM-2B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 27.89
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=general-preference/SPPO-Llama-3-8B-Instruct-GPM-2B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 8.01
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=general-preference/SPPO-Llama-3-8B-Instruct-GPM-2B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 1.23
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=general-preference/SPPO-Llama-3-8B-Instruct-GPM-2B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.19
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=general-preference/SPPO-Llama-3-8B-Instruct-GPM-2B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 29.53
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=general-preference/SPPO-Llama-3-8B-Instruct-GPM-2B
name: Open LLM Leaderboard
General Preference Modeling with Preference Representations for Aligning Language Models (https://arxiv.org/abs/2410.02197)
SPPO-Llama-3-8B-Instruct-GPM-2B
This model was developed using SPPO at iteration 3 and the General Preference representation Model (GPM) (specifically, using GPM-Gemma-2B), based on the meta-llama/Meta-Llama-3-8B-Instruct architecture as starting point. We utilized the prompt sets from the openbmb/UltraFeedback dataset, splited to 3 parts for 3 iterations by snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset. All responses used are synthetic.
Links to Other Models
Model Description
- Model type: A 8B parameter GPT-like model fine-tuned on synthetic datasets.
- Language(s) (NLP): Primarily English
- License: Apache-2.0
- Finetuned from model: meta-llama/Meta-Llama-3-8B-Instruct
AlpacaEval Leaderboard Evaluation Results
Model | LC. Win Rate | Win Rate | Avg. Length |
---|---|---|---|
SPPO-Llama-3-8B-Instruct-GPM-2B | 35.30 | 45.44 | 2490 |
Open LLM Leaderboard Evaluation Results
Results are reported by using lm-evaluation-harness v0.4.1
arc_challenge | truthfulqa_mc2 | winogrande | gsm8k | hellaswag | mmlu | average | |
---|---|---|---|---|---|---|---|
SPPO-Llama-3-8B-Instruct-GPM-2B | 62.03 | 52.95 | 76.56 | 75.36 | 78.57 | 65.66 | 68.52 |
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- eta: 1000
- per_device_train_batch_size: 8
- gradient_accumulation_steps: 1
- seed: 42
- distributed_type: deepspeed_zero3
- num_devices: 8
- optimizer: RMSProp
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_train_epochs: 6.0 (stop at epoch=1.0)
Citation
@article{zhang2024general,
title={General Preference Modeling with Preference Representations for Aligning Language Models},
author={Zhang, Yifan and Zhang, Ge and Wu, Yue and Xu, Kangping and Gu, Quanquan},
journal={arXiv preprint arXiv:2410.02197},
year={2024}
}