yifAI's picture
Update README.md
c004c9b verified
metadata
language:
  - en
license: apache-2.0
datasets:
  - openbmb/UltraFeedback
pipeline_tag: text-generation
model-index:
  - name: SPPO-Llama-3-8B-Instruct-GPM-2B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 60.24
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=general-preference/SPPO-Llama-3-8B-Instruct-GPM-2B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 27.89
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=general-preference/SPPO-Llama-3-8B-Instruct-GPM-2B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 8.01
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=general-preference/SPPO-Llama-3-8B-Instruct-GPM-2B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 1.23
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=general-preference/SPPO-Llama-3-8B-Instruct-GPM-2B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 3.19
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=general-preference/SPPO-Llama-3-8B-Instruct-GPM-2B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 29.53
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=general-preference/SPPO-Llama-3-8B-Instruct-GPM-2B
          name: Open LLM Leaderboard

General Preference Modeling with Preference Representations for Aligning Language Models (https://arxiv.org/abs/2410.02197)

SPPO-Llama-3-8B-Instruct-GPM-2B

This model was developed using SPPO at iteration 3 and the General Preference representation Model (GPM) (specifically, using GPM-Gemma-2B), based on the meta-llama/Meta-Llama-3-8B-Instruct architecture as starting point. We utilized the prompt sets from the openbmb/UltraFeedback dataset, splited to 3 parts for 3 iterations by snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset. All responses used are synthetic.

Links to Other Models

Model Description

  • Model type: A 8B parameter GPT-like model fine-tuned on synthetic datasets.
  • Language(s) (NLP): Primarily English
  • License: Apache-2.0
  • Finetuned from model: meta-llama/Meta-Llama-3-8B-Instruct

AlpacaEval Leaderboard Evaluation Results

Model LC. Win Rate Win Rate Avg. Length
SPPO-Llama-3-8B-Instruct-GPM-2B 35.30 45.44 2490

Open LLM Leaderboard Evaluation Results

Results are reported by using lm-evaluation-harness v0.4.1

arc_challenge truthfulqa_mc2 winogrande gsm8k hellaswag mmlu average
SPPO-Llama-3-8B-Instruct-GPM-2B 62.03 52.95 76.56 75.36 78.57 65.66 68.52

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • eta: 1000
  • per_device_train_batch_size: 8
  • gradient_accumulation_steps: 1
  • seed: 42
  • distributed_type: deepspeed_zero3
  • num_devices: 8
  • optimizer: RMSProp
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_train_epochs: 6.0 (stop at epoch=1.0)

Citation

@article{zhang2024general,
  title={General Preference Modeling with Preference Representations for Aligning Language Models},
  author={Zhang, Yifan and Zhang, Ge and Wu, Yue and Xu, Kangping and Gu, Quanquan},
  journal={arXiv preprint arXiv:2410.02197},
  year={2024}
}