|
# AIDO.RNA 1.6B |
|
|
|
AIDO.RNA is a 1.6B parameter RNA foundation model trained on 42 million non-coding RNA sequences at single-nucleotide resolution. It achieves state-of-the-art performance on a comprehensive set of tasks, including RNA secondary structure prediction, mRNA-related tasks, RNA function prediction tasks, and RNA inverse folding. |
|
<p align="center"> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/63008d4bc1e149ceaff724a3/mNqn5SKQFHxSby3E2dosE.png" alt="description" style="width:80%; height:auto;"> |
|
</p> |
|
|
|
## Model architectural details |
|
AIDO.RNA is an encoder-only transformer and is pre-trained using masked language modeling (MLM) objective. The model architecture parameters are as follows: |
|
| hyperparameter | value | |
|
| :---: | :----: | |
|
| num-layers | 32 | |
|
| hidden-size | 2,048 | |
|
| ffn-hidden-size | 5,440 | |
|
| num-attn-heads | 32 | |
|
| vocab-size | 16 | |
|
|
|
|
|
## Pre-training data |
|
The pre-training data contains 42 million unique ncRNA sequences from RNAcentral version 24.0. |
|
<p align="center"> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/63008d4bc1e149ceaff724a3/EKvuUI9mBw5hkErzpXKm9.png" alt="description" style="width:90%; height:auto;"> |
|
</p> |
|
|
|
## Downstream evaluation |
|
<p align="center"> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/63008d4bc1e149ceaff724a3/uvII1Q_1vDe95WCP1RgUV.png" alt="description" style="width:90%; height:auto;"> |
|
</p> |
|
|
|
|
|
## How to Use |
|
Build any downstream models from this backbone |
|
|
|
### Get RNA sequence embedding |
|
```python |
|
from genbio_finetune.tasks import Embed |
|
model = Embed.from_config({"model.backbone": "rnafm"}).eval() |
|
collated_batch = model.collate({"sequences": ["ACGT", "ACGT"]}) |
|
embedding = model(collated_batch) |
|
print(embedding.shape) |
|
print(embedding) |
|
``` |
|
|
|
### Sequence-level classification |
|
```python |
|
import torch |
|
from genbio_finetune.tasks import SequenceClassification |
|
model = SequenceClassification.from_config({"model.backbone": "rnafm", "model.n_classes": 2}).eval() |
|
collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]}) |
|
logits = model(collated_batch) |
|
print(logits) |
|
print(torch.argmax(logits, dim=-1)) |
|
``` |
|
|
|
### Token-level classification |
|
```python |
|
import torch |
|
from genbio_finetune.tasks import TokenClassification |
|
model = TokenClassification.from_config({"model.backbone": "rnafm", "model.n_classes": 3}).eval() |
|
collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]}) |
|
logits = model(collated_batch) |
|
print(logits) |
|
print(torch.argmax(logits, dim=-1)) |
|
``` |
|
|
|
|
|
### Pairwise token-level classification |
|
@Sazan TODO |
|
|
|
|
|
### Sequence-level regression |
|
```python |
|
from genbio_finetune.tasks import SequenceRegression |
|
model = SequenceRegression.from_config({"model.backbone": "rnafm"}).eval() |
|
collated_batch = model.collate({"sequences": ["ACGT", "AGCT"]}) |
|
logits = model(collated_batch) |
|
print(logits) |
|
``` |
|
|
|
## RNA inverse folding |
|
@Sazan TODO |
|
|
|
Or use our one-liner CLI to finetune or evaluate any of the above! |
|
``` |
|
gbft fit --model SequenceClassification --model.backbone rnafm --data SequenceClassification --data.path <hf_or_local_path_to_your_dataset> |
|
gbft test --model SequenceClassification --model.backbone rnafm --data SequenceClassification --data.path <hf_or_local_path_to_your_dataset> |
|
``` |
|
|
|
For more information, visit: [Model Generator](https://github.com/genbio-ai/modelgenerator) |
|
|
|
## Citation |
|
Please cite AIDO.RNA using the following BibTeX code: |
|
|
|
|
|
## License |
|
@Hongyi TODO |
|
|
|
|
|
|