convnext-small-224-finetuned-piid

This model is a fine-tuned version of facebook/convnext-small-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5651
  • Accuracy: 0.7626

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3405 0.98 20 1.3201 0.4155
1.1715 2.0 41 1.1362 0.5708
0.9231 2.98 61 0.9255 0.6438
0.7128 4.0 82 0.7558 0.6986
0.6204 4.98 102 0.7056 0.7534
0.5322 6.0 123 0.6610 0.7397
0.4403 6.98 143 0.6639 0.7443
0.4388 8.0 164 0.6472 0.7306
0.3901 8.98 184 0.6684 0.7352
0.4202 10.0 205 0.5934 0.7397
0.3784 10.98 225 0.5651 0.7626
0.2973 12.0 246 0.6439 0.7580
0.3614 12.98 266 0.5844 0.7534
0.2795 14.0 287 0.6015 0.7306
0.2825 14.98 307 0.6031 0.7626
0.2364 16.0 328 0.6249 0.7534
0.2162 16.98 348 0.6248 0.7626
0.2455 18.0 369 0.6153 0.7489
0.2314 18.98 389 0.6113 0.7580
0.248 19.51 400 0.6131 0.7580

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gcperk20/convnext-small-224-finetuned-piid

Finetuned
(2)
this model

Evaluation results