ft_da_distilbert_effective_rate
This model is a fine-tuned version of gc394/da_distilbert on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0625
- Mape: 21050161102848.0
- Rmse: 0.2500
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Mape | Rmse |
---|---|---|---|---|---|
No log | 1.0 | 105 | 0.0634 | 7549680615424.0 | 0.2519 |
No log | 2.0 | 210 | 0.0625 | 21050161102848.0 | 0.2500 |
No log | 3.0 | 315 | 0.0651 | 15955784630272.0 | 0.2552 |
No log | 4.0 | 420 | 0.0676 | 16507671150592.0 | 0.2599 |
0.0129 | 5.0 | 525 | 0.0729 | 35525666799616.0 | 0.2700 |
0.0129 | 6.0 | 630 | 0.0669 | 30705371316224.0 | 0.2586 |
0.0129 | 7.0 | 735 | 0.0686 | 32481740849152.0 | 0.2619 |
0.0129 | 8.0 | 840 | 0.0703 | 40486999949312.0 | 0.2652 |
0.0129 | 9.0 | 945 | 0.0708 | 35813152784384.0 | 0.2661 |
0.005 | 10.0 | 1050 | 0.0704 | 38553111232512.0 | 0.2653 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.4.0.dev20240502
- Datasets 2.19.0
- Tokenizers 0.19.1
- Downloads last month
- 120
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for gc394/ft_da_distilbert_effective_rate
Base model
distilbert/distilbert-base-uncased
Finetuned
gc394/da_distilbert