ft_da_distilbert_effective_rate

This model is a fine-tuned version of gc394/da_distilbert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0625
  • Mape: 21050161102848.0
  • Rmse: 0.2500

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Mape Rmse
No log 1.0 105 0.0634 7549680615424.0 0.2519
No log 2.0 210 0.0625 21050161102848.0 0.2500
No log 3.0 315 0.0651 15955784630272.0 0.2552
No log 4.0 420 0.0676 16507671150592.0 0.2599
0.0129 5.0 525 0.0729 35525666799616.0 0.2700
0.0129 6.0 630 0.0669 30705371316224.0 0.2586
0.0129 7.0 735 0.0686 32481740849152.0 0.2619
0.0129 8.0 840 0.0703 40486999949312.0 0.2652
0.0129 9.0 945 0.0708 35813152784384.0 0.2661
0.005 10.0 1050 0.0704 38553111232512.0 0.2653

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.4.0.dev20240502
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
17
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gc394/ft_da_distilbert_effective_rate

Finetuned
(3)
this model