|
--- |
|
license: apache-2.0 |
|
base_model: facebook/bart-base |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: pubmed-abs-sub-03 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# pubmed-abs-sub-03 |
|
|
|
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1905 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:---------------:| |
|
| 0.53 | 0.11 | 500 | 0.4647 | |
|
| 0.4464 | 0.21 | 1000 | 0.3745 | |
|
| 0.4506 | 0.32 | 1500 | 0.3262 | |
|
| 0.3944 | 0.43 | 2000 | 0.3019 | |
|
| 0.3538 | 0.54 | 2500 | 0.2816 | |
|
| 0.2626 | 0.64 | 3000 | 0.2692 | |
|
| 0.2607 | 0.75 | 3500 | 0.2540 | |
|
| 0.2967 | 0.86 | 4000 | 0.2357 | |
|
| 0.2716 | 0.96 | 4500 | 0.2334 | |
|
| 0.2065 | 1.07 | 5000 | 0.2286 | |
|
| 0.19 | 1.18 | 5500 | 0.2271 | |
|
| 0.1976 | 1.28 | 6000 | 0.2247 | |
|
| 0.2223 | 1.39 | 6500 | 0.2164 | |
|
| 0.2229 | 1.5 | 7000 | 0.2123 | |
|
| 0.2018 | 1.61 | 7500 | 0.2106 | |
|
| 0.1857 | 1.71 | 8000 | 0.2037 | |
|
| 0.22 | 1.82 | 8500 | 0.2033 | |
|
| 0.1793 | 1.93 | 9000 | 0.1993 | |
|
| 0.1441 | 2.03 | 9500 | 0.2012 | |
|
| 0.1515 | 2.14 | 10000 | 0.2011 | |
|
| 0.1412 | 2.25 | 10500 | 0.2023 | |
|
| 0.1505 | 2.35 | 11000 | 0.1978 | |
|
| 0.1472 | 2.46 | 11500 | 0.1961 | |
|
| 0.1526 | 2.57 | 12000 | 0.1916 | |
|
| 0.1454 | 2.68 | 12500 | 0.1919 | |
|
| 0.1011 | 2.78 | 13000 | 0.1920 | |
|
| 0.1386 | 2.89 | 13500 | 0.1915 | |
|
| 0.1368 | 3.0 | 14000 | 0.1905 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.1 |
|
- Pytorch 2.1.0 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|