EC-Seq2Seq
Collection
12 items
•
Updated
This model is a fine-tuned version of facebook/bart-base on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
---|---|---|---|---|---|---|
0.6534 | 1.0 | 663 | 0.4641 | 0.8448 | 0.6691 | 0.7313 |
0.5078 | 2.0 | 1326 | 0.4398 | 0.8457 | 0.6719 | 0.7333 |
0.4367 | 3.0 | 1989 | 0.4274 | 0.847 | 0.6717 | 0.7335 |
0.3575 | 4.0 | 2652 | 0.4149 | 0.8481 | 0.6733 | 0.735 |
0.3319 | 5.0 | 3315 | 0.4170 | 0.8481 | 0.6724 | 0.7343 |
0.3179 | 6.0 | 3978 | 0.4264 | 0.8484 | 0.6733 | 0.735 |
0.2702 | 7.0 | 4641 | 0.4207 | 0.8489 | 0.6732 | 0.7353 |
0.2606 | 8.0 | 5304 | 0.4205 | 0.8487 | 0.6725 | 0.7347 |
0.2496 | 9.0 | 5967 | 0.4247 | 0.8466 | 0.6717 | 0.7334 |
0.2353 | 10.0 | 6630 | 0.4236 | 0.8482 | 0.673 | 0.7347 |