bart-noised-with-kaggle-dist
This model is a fine-tuned version of facebook/bart-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2336
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.4701 | 0.11 | 500 | 0.3771 |
0.3415 | 0.21 | 1000 | 0.3434 |
0.381 | 0.32 | 1500 | 0.3148 |
0.4196 | 0.43 | 2000 | 0.2986 |
0.3141 | 0.54 | 2500 | 0.3033 |
0.2984 | 0.64 | 3000 | 0.2834 |
0.2879 | 0.75 | 3500 | 0.2756 |
0.2906 | 0.86 | 4000 | 0.2646 |
0.346 | 0.96 | 4500 | 0.2594 |
0.2556 | 1.07 | 5000 | 0.2661 |
0.2264 | 1.18 | 5500 | 0.2611 |
0.2422 | 1.28 | 6000 | 0.2564 |
0.2103 | 1.39 | 6500 | 0.2543 |
0.2755 | 1.5 | 7000 | 0.2493 |
0.2587 | 1.61 | 7500 | 0.2473 |
0.2544 | 1.71 | 8000 | 0.2434 |
0.2136 | 1.82 | 8500 | 0.2383 |
0.2366 | 1.93 | 9000 | 0.2370 |
0.1862 | 2.03 | 9500 | 0.2455 |
0.1937 | 2.14 | 10000 | 0.2419 |
0.1673 | 2.25 | 10500 | 0.2405 |
0.1837 | 2.35 | 11000 | 0.2402 |
0.165 | 2.46 | 11500 | 0.2391 |
0.1725 | 2.57 | 12000 | 0.2352 |
0.1769 | 2.68 | 12500 | 0.2337 |
0.1347 | 2.78 | 13000 | 0.2355 |
0.1834 | 2.89 | 13500 | 0.2339 |
0.1505 | 3.0 | 14000 | 0.2336 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
- Downloads last month
- 25
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.