File size: 1,661 Bytes
8f57d46
 
 
 
 
 
7eebdaf
 
8f57d46
 
7eebdaf
8f57d46
 
 
7eebdaf
8f57d46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7eebdaf
8f57d46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7eebdaf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
language:
- en
---

# all-mpnet-base-v2-eclass

This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

The model is based on the sentence-transformers/all-mpnet-base-v2 model and was fine-tuned with the [eclass-dataset](https://huggingface.co/datasets/gart-labor/eclassTrainST).
<!--- Describe your model here -->

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('gart-labor/all-mpnet-base-v2-eclass')
embeddings = model.encode(sentences)
print(embeddings)
```

## Evaluation Results

<!--- Describe how your model was evaluated -->

For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
  (2): Normalize()
)
```