Update README.md
Browse files
README.md
CHANGED
|
@@ -4,13 +4,15 @@ tags:
|
|
| 4 |
- sentence-transformers
|
| 5 |
- feature-extraction
|
| 6 |
- sentence-similarity
|
| 7 |
-
|
|
|
|
| 8 |
---
|
| 9 |
|
| 10 |
-
#
|
| 11 |
|
| 12 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
| 13 |
|
|
|
|
| 14 |
<!--- Describe your model here -->
|
| 15 |
|
| 16 |
## Usage (Sentence-Transformers)
|
|
@@ -27,13 +29,11 @@ Then you can use the model like this:
|
|
| 27 |
from sentence_transformers import SentenceTransformer
|
| 28 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
| 29 |
|
| 30 |
-
model = SentenceTransformer('
|
| 31 |
embeddings = model.encode(sentences)
|
| 32 |
print(embeddings)
|
| 33 |
```
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
## Evaluation Results
|
| 38 |
|
| 39 |
<!--- Describe how your model was evaluated -->
|
|
@@ -41,42 +41,6 @@ print(embeddings)
|
|
| 41 |
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
| 42 |
|
| 43 |
|
| 44 |
-
## Training
|
| 45 |
-
The model was trained with the parameters:
|
| 46 |
-
|
| 47 |
-
**DataLoader**:
|
| 48 |
-
|
| 49 |
-
`torch.utils.data.dataloader.DataLoader` of length 43680 with parameters:
|
| 50 |
-
```
|
| 51 |
-
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
| 52 |
-
```
|
| 53 |
-
|
| 54 |
-
**Loss**:
|
| 55 |
-
|
| 56 |
-
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
|
| 57 |
-
```
|
| 58 |
-
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
|
| 59 |
-
```
|
| 60 |
-
|
| 61 |
-
Parameters of the fit()-Method:
|
| 62 |
-
```
|
| 63 |
-
{
|
| 64 |
-
"epochs": 2,
|
| 65 |
-
"evaluation_steps": 0,
|
| 66 |
-
"evaluator": "NoneType",
|
| 67 |
-
"max_grad_norm": 1,
|
| 68 |
-
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
| 69 |
-
"optimizer_params": {
|
| 70 |
-
"lr": 2e-05
|
| 71 |
-
},
|
| 72 |
-
"scheduler": "WarmupLinear",
|
| 73 |
-
"steps_per_epoch": null,
|
| 74 |
-
"warmup_steps": 8736,
|
| 75 |
-
"weight_decay": 0.01
|
| 76 |
-
}
|
| 77 |
-
```
|
| 78 |
-
|
| 79 |
-
|
| 80 |
## Full Model Architecture
|
| 81 |
```
|
| 82 |
SentenceTransformer(
|
|
@@ -84,8 +48,4 @@ SentenceTransformer(
|
|
| 84 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
| 85 |
(2): Normalize()
|
| 86 |
)
|
| 87 |
-
```
|
| 88 |
-
|
| 89 |
-
## Citing & Authors
|
| 90 |
-
|
| 91 |
-
<!--- Describe where people can find more information -->
|
|
|
|
| 4 |
- sentence-transformers
|
| 5 |
- feature-extraction
|
| 6 |
- sentence-similarity
|
| 7 |
+
language:
|
| 8 |
+
- en
|
| 9 |
---
|
| 10 |
|
| 11 |
+
# all-mpnet-base-v2-eclass
|
| 12 |
|
| 13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
| 14 |
|
| 15 |
+
The model is based on the sentence-transformers/all-mpnet-base-v2 model and was fine-tuned with the [eclass-dataset](https://huggingface.co/datasets/gart-labor/eclassTrainST).
|
| 16 |
<!--- Describe your model here -->
|
| 17 |
|
| 18 |
## Usage (Sentence-Transformers)
|
|
|
|
| 29 |
from sentence_transformers import SentenceTransformer
|
| 30 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
| 31 |
|
| 32 |
+
model = SentenceTransformer('gart-labor/all-mpnet-base-v2-eclass')
|
| 33 |
embeddings = model.encode(sentences)
|
| 34 |
print(embeddings)
|
| 35 |
```
|
| 36 |
|
|
|
|
|
|
|
| 37 |
## Evaluation Results
|
| 38 |
|
| 39 |
<!--- Describe how your model was evaluated -->
|
|
|
|
| 41 |
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
| 42 |
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
## Full Model Architecture
|
| 45 |
```
|
| 46 |
SentenceTransformer(
|
|
|
|
| 48 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
| 49 |
(2): Normalize()
|
| 50 |
)
|
| 51 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|