whisper-ft-libri-en

This model is a fine-tuned version of openai/whisper-tiny on the librispeech_asr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8069
  • Wer: 31.6163

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.740176574997311e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2
  • training_steps: 400
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.1717 0.38 5 2.1709 98.0462
1.2371 0.77 10 1.2719 79.9290
0.7577 1.15 15 1.0510 35.3464
0.5325 1.54 20 0.9475 32.6821
0.5545 1.92 25 0.8607 30.3730
0.2957 2.31 30 0.8051 33.3925
0.1846 2.69 35 0.7487 30.1954
0.0748 3.08 40 0.6882 32.1492
0.0709 3.46 45 0.6692 31.2611
0.0908 3.85 50 0.6465 29.4849
0.0764 4.23 55 0.6578 28.9520
0.0259 4.62 60 0.6637 30.0178
0.0178 5.0 65 0.6955 30.3730
0.0131 5.38 70 0.6869 33.2149
0.0162 5.77 75 0.7000 32.3268
0.0081 6.15 80 0.6814 32.3268
0.0075 6.54 85 0.6897 31.0835
0.0069 6.92 90 0.7151 32.6821
0.0062 7.31 95 0.7181 30.3730
0.0056 7.69 100 0.7173 30.0178
0.0052 8.08 105 0.7411 31.9716
0.0073 8.46 110 0.7526 32.5044
0.0061 8.85 115 0.7467 32.8597
0.0034 9.23 120 0.7314 31.7940
0.0122 9.62 125 0.7276 31.7940
0.0429 10.0 130 0.7417 32.5044
0.0032 10.38 135 0.7555 31.9716
0.0141 10.77 140 0.7636 31.2611
0.0038 11.15 145 0.7607 31.9716
0.0038 11.54 150 0.7716 33.0373
0.0035 11.92 155 0.7985 34.2806
0.0038 12.31 160 0.7797 32.1492
0.0036 12.69 165 0.7767 31.4387
0.0022 13.08 170 0.7830 31.7940
0.0033 13.46 175 0.7992 30.7282
0.0019 13.85 180 0.7541 30.0178
0.0016 14.23 185 0.7587 30.0178
0.0027 14.62 190 0.7766 30.3730
0.0016 15.0 195 0.8056 32.8597
0.0015 15.38 200 0.8096 32.5044
0.0012 15.77 205 0.7931 32.6821
0.001 16.15 210 0.7829 31.6163
0.0045 16.54 215 0.7774 30.9059
0.0009 16.92 220 0.7750 30.1954
0.0009 17.31 225 0.7780 28.9520
0.0008 17.69 230 0.7803 29.1297
0.0007 18.08 235 0.7807 29.6625
0.0025 18.46 240 0.7813 30.1954
0.0007 18.85 245 0.7840 30.0178
0.0006 19.23 250 0.7860 30.0178
0.0007 19.62 255 0.7839 30.1954
0.0005 20.0 260 0.7834 30.1954
0.0006 20.38 265 0.7844 30.3730
0.0102 20.77 270 0.7859 30.7282
0.0006 21.15 275 0.7901 30.7282
0.0006 21.54 280 0.7950 30.7282
0.0006 21.92 285 0.7975 31.0835
0.0006 22.31 290 0.7984 30.7282
0.0006 22.69 295 0.7954 30.3730
0.0005 23.08 300 0.7935 31.0835
0.0005 23.46 305 0.7928 31.0835
0.0005 23.85 310 0.7933 31.2611
0.0038 24.23 315 0.7950 30.9059
0.0005 24.62 320 0.7976 31.6163
0.0004 25.0 325 0.7995 31.7940
0.0004 25.38 330 0.8006 31.4387
0.0004 25.77 335 0.8005 31.6163
0.0005 26.15 340 0.8011 31.4387
0.0004 26.54 345 0.8020 31.6163
0.0004 26.92 350 0.8024 31.4387
0.0017 27.31 355 0.8029 31.4387
0.0004 27.69 360 0.8035 31.4387
0.0004 28.08 365 0.8045 31.4387
0.0004 28.46 370 0.8049 31.4387
0.0004 28.85 375 0.8056 31.4387
0.0011 29.23 380 0.8060 31.4387
0.0004 29.62 385 0.8065 31.4387
0.0004 30.0 390 0.8065 31.4387
0.0004 30.38 395 0.8068 31.4387
0.0004 30.77 400 0.8069 31.6163

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.12.1+cu113
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
21
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train garnagar/whisper-ft-libri-en

Evaluation results