TinyLlama-1.1B-SlimOrca-Function-Calling-3T

image/jpeg

This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T on the SlimOrca and glaive-function-calling-v2 datasets.

Evaluation

It achieves the following results on the evaluation set:

  • Loss: 0.7403

Please see the scripts/llm-eval.py to recreate the evaluation results from the test split as published here: gardner/tinyllama-function-calling-eval. The model responds with function calling when expected and refuses when it doesn't have access to tools. In the linked dataset, result1 is generated by this model and result2 is from the test dataset.

Built with Axolotl

See axolotl config

axolotl version: 0.3.0

base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true

load_in_8bit: true
load_in_4bit: false
strict: false

datasets:
  - path: Open-Orca/SlimOrca-Dedup
    type: sharegpt
    conversation: chatml

  - path: gardner/glaive-function-calling-v2-sharegpt
    type: sharegpt
    conversation: chatml

dataset_prepared_path: ./.prepared-datasets/glaive-function-calling-v2-sharegpt
val_set_size: 0.05
output_dir: ./tinyllama/function-calling/chatml

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • load_in_8bit: True
  • load_in_4bit: False
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: fp4
  • bnb_4bit_use_double_quant: False
  • bnb_4bit_compute_dtype: float32

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
1.2492 0.0 1 1.2363
0.7621 0.25 1896 0.8096
0.757 0.5 3792 0.7852
0.6424 0.75 5688 0.7717
0.5944 1.04 7584 0.7625
0.73 1.29 9480 0.7585
0.6781 1.54 11376 0.7521
0.829 1.79 13272 0.7471
0.6964 2.08 15168 0.7467
0.6652 2.33 17064 0.7453
0.7645 2.58 18960 0.7420
0.5702 2.83 20856 0.7392
0.7049 3.12 22752 0.7418
0.6087 3.37 24648 0.7412
0.6064 3.62 26544 0.7405
0.7125 3.87 28440 0.7403

Framework versions

  • PEFT 0.7.0
  • Transformers 4.37.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
0
Safetensors
Model size
1.1B params
Tensor type
BF16
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for gardner/TinyLlama-1.1B-SlimOrca-Function-Calling-3T

Adapter
(66)
this model
Quantizations
1 model

Datasets used to train gardner/TinyLlama-1.1B-SlimOrca-Function-Calling-3T