metadata
tags: autonlp
language: unk
widget:
- text: I love AutoNLP 🤗
datasets:
- gabitoo1234/autonlp-data-mut_uchile
co2_eq_emissions: 43.078469852595994
Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 640218740
- CO2 Emissions (in grams): 43.078469852595994
Validation Metrics
- Loss: 0.8302136063575745
- Accuracy: 0.7887341933835739
- Macro F1: 0.5756730305293746
- Micro F1: 0.7887341933835739
- Weighted F1: 0.7878942570915727
- Macro Precision: 0.620883634472996
- Micro Precision: 0.7887341933835739
- Weighted Precision: 0.8009430092038783
- Macro Recall: 0.5521761315904072
- Micro Recall: 0.7887341933835739
- Weighted Recall: 0.7887341933835739
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/gabitoo1234/autonlp-mut_uchile-640218740
Or Python API:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("gabitoo1234/autonlp-mut_uchile-640218740", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("gabitoo1234/autonlp-mut_uchile-640218740", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)