Add pipeline tag and library name

#2
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +20 -9
README.md CHANGED
@@ -1,5 +1,7 @@
1
  ---
2
  license: mit
 
 
3
  ---
4
 
5
  # AnySat: An Earth Observation Model for Any Resolutions, Scales, and Modalities
@@ -62,7 +64,7 @@ Arrange your data in a dictionary with any of the following keys:
62
  | l8 | Time series tensor |BxTx11xHxW | B8, B1, B2, B3, B4, B5, B6, B7, B9, B10, B11 | 10m |
63
  | modis | Time series tensor |BxTx7xHxW | B1, B2, B3, B4, B5, B6, B7 | 250m |
64
 
65
- Note that time series requires a `_dates` companion tensor containing the day of the year: 01/01 = 0, 31/12=364.
66
 
67
  **Example Input** for a tile of 60x60m and a batch size of B:
68
 
@@ -84,16 +86,19 @@ Decide on:
84
  - `'tile'`: Single vector per tile
85
  - `'patch'`: A vector per patch
86
  - `'dense'`: A vector per sub-patch
87
- - `'all'`: a tuple with all three outputs
88
-
 
 
89
  The sub patches are `1x1` pixels for time series and `10x10` pixels for VHR images. If using `output='dense'`, specify the `output_modality`.
90
 
91
  Example use:
92
  ```python
93
- features = AnySat(data, scale=10, output='tile') #tensor of size [D,]
94
- features = AnySat(data, scale=10, output='patch') #tensor of size [D,6,6]
95
- features = AnySat(data, scale=20, output='patch') #tensor of size [D,3,3]
96
- features = AnySat(data, scale=20, output='dense', output_modality='aerial') #tensor of size [D,30,30]
 
97
  ```
98
  **Explanation for the size of the dense map:** `d=10` for 'aerial' which has a 0.2m resolution, the sub-patches are 2x2 m.
99
 
@@ -149,7 +154,7 @@ python src/train.py exp=BraDD_AnySAT_LP
149
  Our implementation already supports 9 datasets:
150
 
151
  <p align="center">
152
- <img src="https://cdn-uploads.huggingface.co/production/uploads/662b7fba68ed7bbf40bfb0df/nGGz8kiDdeTJqIPSdrlSz.png" alt="AnySat Datasets" width="500">
153
  </p>
154
 
155
  ## GeoPlex Datasets
@@ -216,4 +221,10 @@ Please use the following bibtex:
216
  journal={arXiv preprint arXiv:2412.14123},
217
  year={2024}
218
  }
219
- ```
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ pipeline_tag: image-feature-extraction
4
+ library_name: torch
5
  ---
6
 
7
  # AnySat: An Earth Observation Model for Any Resolutions, Scales, and Modalities
 
64
  | l8 | Time series tensor |BxTx11xHxW | B8, B1, B2, B3, B4, B5, B6, B7, B9, B10, B11 | 10m |
65
  | modis | Time series tensor |BxTx7xHxW | B1, B2, B3, B4, B5, B6, B7 | 250m |
66
 
67
+ Note that time series requires a `_dates` companion tensor containing the day of the year: 01/01 = 0, 31/12=364. The data also needs to be normalized (data -mean) /std as input to our model.
68
 
69
  **Example Input** for a tile of 60x60m and a batch size of B:
70
 
 
86
  - `'tile'`: Single vector per tile
87
  - `'patch'`: A vector per patch
88
  - `'dense'`: A vector per sub-patch
89
+ - `'all'`: A vector per patch with class token at first position
90
+
91
+ ⚠️ For segmentation tasks, use 'dense' argument!
92
+
93
  The sub patches are `1x1` pixels for time series and `10x10` pixels for VHR images. If using `output='dense'`, specify the `output_modality`.
94
 
95
  Example use:
96
  ```python
97
+ features = AnySat(data, patch_size=10, output='tile') #tensor of size [B, D,]
98
+ features = AnySat(data, patch_size=10, output='patch') #tensor of size [B, D, 6, 6]
99
+ features = AnySat(data, patch_size=20, output='patch') #tensor of size [B, D, 3, 3]
100
+ features = AnySat(data, patch_size=20, output='dense', output_modality='aerial') #tensor of size [B, 2*D, 30, 30]
101
+ features = AnySat(data, patch_size=20, output='dense', output_modality='s2') #tensor of size [B, 2*D, 6, 6]
102
  ```
103
  **Explanation for the size of the dense map:** `d=10` for 'aerial' which has a 0.2m resolution, the sub-patches are 2x2 m.
104
 
 
154
  Our implementation already supports 9 datasets:
155
 
156
  <p align="center">
157
+ <img src=".media/datasets.png" alt="AnySat Datasets" width="500">
158
  </p>
159
 
160
  ## GeoPlex Datasets
 
221
  journal={arXiv preprint arXiv:2412.14123},
222
  year={2024}
223
  }
224
+ ```
225
+
226
+ # Acknowledgements
227
+ - The code is conducted on the same base as [OmniSat](https://github.com/gastruc/OmniSat)
228
+ - The JEPA implementation comes from [JEPA](https://github.com/facebookresearch/ijepa)
229
+ - The code from Pangaea datasets comes from [Pangaea](https://github.com/VMarsocci/pangaea-bench)
230
+ <br>