Add pipeline tag and library name
#2
by
nielsr
HF Staff
- opened
README.md
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
3 |
---
|
4 |
|
5 |
# AnySat: An Earth Observation Model for Any Resolutions, Scales, and Modalities
|
@@ -62,7 +64,7 @@ Arrange your data in a dictionary with any of the following keys:
|
|
62 |
| l8 | Time series tensor |BxTx11xHxW | B8, B1, B2, B3, B4, B5, B6, B7, B9, B10, B11 | 10m |
|
63 |
| modis | Time series tensor |BxTx7xHxW | B1, B2, B3, B4, B5, B6, B7 | 250m |
|
64 |
|
65 |
-
Note that time series requires a `_dates` companion tensor containing the day of the year: 01/01 = 0, 31/12=364.
|
66 |
|
67 |
**Example Input** for a tile of 60x60m and a batch size of B:
|
68 |
|
@@ -84,16 +86,19 @@ Decide on:
|
|
84 |
- `'tile'`: Single vector per tile
|
85 |
- `'patch'`: A vector per patch
|
86 |
- `'dense'`: A vector per sub-patch
|
87 |
-
- `'all'`:
|
88 |
-
|
|
|
|
|
89 |
The sub patches are `1x1` pixels for time series and `10x10` pixels for VHR images. If using `output='dense'`, specify the `output_modality`.
|
90 |
|
91 |
Example use:
|
92 |
```python
|
93 |
-
features = AnySat(data,
|
94 |
-
features = AnySat(data,
|
95 |
-
features = AnySat(data,
|
96 |
-
features = AnySat(data,
|
|
|
97 |
```
|
98 |
**Explanation for the size of the dense map:** `d=10` for 'aerial' which has a 0.2m resolution, the sub-patches are 2x2 m.
|
99 |
|
@@ -149,7 +154,7 @@ python src/train.py exp=BraDD_AnySAT_LP
|
|
149 |
Our implementation already supports 9 datasets:
|
150 |
|
151 |
<p align="center">
|
152 |
-
<img src="
|
153 |
</p>
|
154 |
|
155 |
## GeoPlex Datasets
|
@@ -216,4 +221,10 @@ Please use the following bibtex:
|
|
216 |
journal={arXiv preprint arXiv:2412.14123},
|
217 |
year={2024}
|
218 |
}
|
219 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
pipeline_tag: image-feature-extraction
|
4 |
+
library_name: torch
|
5 |
---
|
6 |
|
7 |
# AnySat: An Earth Observation Model for Any Resolutions, Scales, and Modalities
|
|
|
64 |
| l8 | Time series tensor |BxTx11xHxW | B8, B1, B2, B3, B4, B5, B6, B7, B9, B10, B11 | 10m |
|
65 |
| modis | Time series tensor |BxTx7xHxW | B1, B2, B3, B4, B5, B6, B7 | 250m |
|
66 |
|
67 |
+
Note that time series requires a `_dates` companion tensor containing the day of the year: 01/01 = 0, 31/12=364. The data also needs to be normalized (data -mean) /std as input to our model.
|
68 |
|
69 |
**Example Input** for a tile of 60x60m and a batch size of B:
|
70 |
|
|
|
86 |
- `'tile'`: Single vector per tile
|
87 |
- `'patch'`: A vector per patch
|
88 |
- `'dense'`: A vector per sub-patch
|
89 |
+
- `'all'`: A vector per patch with class token at first position
|
90 |
+
|
91 |
+
⚠️ For segmentation tasks, use 'dense' argument!
|
92 |
+
|
93 |
The sub patches are `1x1` pixels for time series and `10x10` pixels for VHR images. If using `output='dense'`, specify the `output_modality`.
|
94 |
|
95 |
Example use:
|
96 |
```python
|
97 |
+
features = AnySat(data, patch_size=10, output='tile') #tensor of size [B, D,]
|
98 |
+
features = AnySat(data, patch_size=10, output='patch') #tensor of size [B, D, 6, 6]
|
99 |
+
features = AnySat(data, patch_size=20, output='patch') #tensor of size [B, D, 3, 3]
|
100 |
+
features = AnySat(data, patch_size=20, output='dense', output_modality='aerial') #tensor of size [B, 2*D, 30, 30]
|
101 |
+
features = AnySat(data, patch_size=20, output='dense', output_modality='s2') #tensor of size [B, 2*D, 6, 6]
|
102 |
```
|
103 |
**Explanation for the size of the dense map:** `d=10` for 'aerial' which has a 0.2m resolution, the sub-patches are 2x2 m.
|
104 |
|
|
|
154 |
Our implementation already supports 9 datasets:
|
155 |
|
156 |
<p align="center">
|
157 |
+
<img src=".media/datasets.png" alt="AnySat Datasets" width="500">
|
158 |
</p>
|
159 |
|
160 |
## GeoPlex Datasets
|
|
|
221 |
journal={arXiv preprint arXiv:2412.14123},
|
222 |
year={2024}
|
223 |
}
|
224 |
+
```
|
225 |
+
|
226 |
+
# Acknowledgements
|
227 |
+
- The code is conducted on the same base as [OmniSat](https://github.com/gastruc/OmniSat)
|
228 |
+
- The JEPA implementation comes from [JEPA](https://github.com/facebookresearch/ijepa)
|
229 |
+
- The code from Pangaea datasets comes from [Pangaea](https://github.com/VMarsocci/pangaea-bench)
|
230 |
+
<br>
|