wav2vec2-classifier-aug

This model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5202
  • Accuracy: 0.8679
  • Precision: 0.8908
  • Recall: 0.8679
  • F1: 0.8667
  • Binary: 0.9067

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Binary
No log 0.19 50 4.4234 0.0162 0.0017 0.0162 0.0031 0.1558
No log 0.38 100 4.2882 0.0350 0.0028 0.0350 0.0047 0.3075
No log 0.58 150 3.9749 0.0404 0.0024 0.0404 0.0043 0.3170
No log 0.77 200 3.7072 0.0458 0.0070 0.0458 0.0109 0.3296
No log 0.96 250 3.4794 0.0836 0.0233 0.0836 0.0217 0.3580
4.1218 1.15 300 3.2647 0.1321 0.0526 0.1321 0.0640 0.3930
4.1218 1.34 350 3.0118 0.2318 0.1558 0.2318 0.1503 0.4623
4.1218 1.53 400 2.7772 0.2642 0.1570 0.2642 0.1752 0.4849
4.1218 1.73 450 2.5522 0.3585 0.3222 0.3585 0.2848 0.5520
4.1218 1.92 500 2.3428 0.3342 0.2725 0.3342 0.2563 0.5372
3.1065 2.11 550 2.0580 0.4124 0.3332 0.4124 0.3326 0.5887
3.1065 2.3 600 1.8454 0.4771 0.4322 0.4771 0.4131 0.6323
3.1065 2.49 650 1.6830 0.5310 0.4926 0.5310 0.4771 0.6733
3.1065 2.68 700 1.5545 0.5580 0.5326 0.5580 0.5096 0.6898
3.1065 2.88 750 1.3593 0.6253 0.5975 0.6253 0.5812 0.7388
2.2273 3.07 800 1.2047 0.6927 0.6715 0.6927 0.6535 0.7849
2.2273 3.26 850 1.1223 0.6765 0.6662 0.6765 0.6461 0.7728
2.2273 3.45 900 1.0296 0.7062 0.7121 0.7062 0.6756 0.7943
2.2273 3.64 950 1.0001 0.7251 0.7388 0.7251 0.7074 0.8081
2.2273 3.84 1000 0.9879 0.7466 0.7650 0.7466 0.7265 0.8229
1.734 4.03 1050 0.9078 0.7466 0.7590 0.7466 0.7323 0.8237
1.734 4.22 1100 0.8344 0.7898 0.8284 0.7898 0.7794 0.8550
1.734 4.41 1150 0.8199 0.7925 0.8029 0.7925 0.7749 0.8558
1.734 4.6 1200 0.7227 0.7951 0.8309 0.7951 0.7892 0.8566
1.734 4.79 1250 0.7666 0.7871 0.8246 0.7871 0.7768 0.8520
1.734 4.99 1300 0.7529 0.7871 0.7989 0.7871 0.7768 0.8531
1.4492 5.18 1350 0.7035 0.8032 0.8287 0.8032 0.7986 0.8633
1.4492 5.37 1400 0.6597 0.8194 0.8522 0.8194 0.8141 0.8739
1.4492 5.56 1450 0.6592 0.8113 0.8472 0.8113 0.8108 0.8690
1.4492 5.75 1500 0.6535 0.8248 0.8547 0.8248 0.8203 0.8784
1.4492 5.94 1550 0.6343 0.8167 0.8568 0.8167 0.8116 0.8701
1.2533 6.14 1600 0.5640 0.8356 0.8589 0.8356 0.8329 0.8860
1.2533 6.33 1650 0.5465 0.8383 0.8669 0.8383 0.8341 0.8889
1.2533 6.52 1700 0.5594 0.8248 0.8549 0.8248 0.8204 0.8776
1.2533 6.71 1750 0.5765 0.8464 0.8776 0.8464 0.8463 0.8935
1.2533 6.9 1800 0.5169 0.8571 0.8758 0.8571 0.8543 0.9000
1.138 7.09 1850 0.5206 0.8410 0.8676 0.8410 0.8421 0.8887
1.138 7.29 1900 0.5258 0.8544 0.8779 0.8544 0.8537 0.8992
1.138 7.48 1950 0.5855 0.8383 0.8693 0.8383 0.8384 0.8879
1.138 7.67 2000 0.5209 0.8491 0.8800 0.8491 0.8493 0.8943
1.138 7.86 2050 0.5150 0.8410 0.8710 0.8410 0.8411 0.8889
1.0249 8.05 2100 0.4937 0.8571 0.8840 0.8571 0.8568 0.9022
1.0249 8.25 2150 0.5344 0.8518 0.8790 0.8518 0.8492 0.8995
1.0249 8.44 2200 0.5322 0.8437 0.8751 0.8437 0.8428 0.8927
1.0249 8.63 2250 0.5533 0.8248 0.8561 0.8248 0.8233 0.8774
1.0249 8.82 2300 0.5242 0.8491 0.8797 0.8491 0.8469 0.8943
0.9523 9.01 2350 0.4938 0.8679 0.8911 0.8679 0.8669 0.9075
0.9523 9.2 2400 0.5037 0.8625 0.8888 0.8625 0.8627 0.9038
0.9523 9.4 2450 0.4973 0.8571 0.8794 0.8571 0.8565 0.9000
0.9523 9.59 2500 0.5343 0.8383 0.8705 0.8383 0.8384 0.8868
0.9523 9.78 2550 0.5493 0.8491 0.8746 0.8491 0.8472 0.8943
0.9523 9.97 2600 0.5226 0.8544 0.8783 0.8544 0.8537 0.8981
0.8792 10.16 2650 0.4883 0.8625 0.8857 0.8625 0.8598 0.9038
0.8792 10.35 2700 0.5178 0.8518 0.8784 0.8518 0.8503 0.8962
0.8792 10.55 2750 0.6273 0.8383 0.8756 0.8383 0.8363 0.8879
0.8792 10.74 2800 0.5229 0.8571 0.8855 0.8571 0.8576 0.9000
0.8792 10.93 2850 0.4617 0.8706 0.8924 0.8706 0.8686 0.9094
0.8251 11.12 2900 0.5764 0.8625 0.8874 0.8625 0.8626 0.9038
0.8251 11.31 2950 0.5111 0.8706 0.8960 0.8706 0.8689 0.9094
0.8251 11.51 3000 0.6013 0.8437 0.8603 0.8437 0.8410 0.8906
0.8251 11.7 3050 0.5968 0.8437 0.8682 0.8437 0.8405 0.8916
0.8251 11.89 3100 0.5467 0.8544 0.8806 0.8544 0.8542 0.8981
0.7578 12.08 3150 0.6015 0.8544 0.8774 0.8544 0.8523 0.8981
0.7578 12.27 3200 0.4897 0.8679 0.8814 0.8679 0.8632 0.9067
0.7578 12.46 3250 0.5395 0.8491 0.8765 0.8491 0.8460 0.8935
0.7578 12.66 3300 0.5873 0.8491 0.8767 0.8491 0.8489 0.8935
0.7578 12.85 3350 0.5386 0.8491 0.8735 0.8491 0.8498 0.8935
0.7295 13.04 3400 0.5826 0.8652 0.8949 0.8652 0.8663 0.9057
0.7295 13.23 3450 0.5358 0.8571 0.8859 0.8571 0.8562 0.9003
0.7295 13.42 3500 0.4802 0.8841 0.9017 0.8841 0.8838 0.9173
0.7295 13.61 3550 0.5709 0.8410 0.8692 0.8410 0.8404 0.8879
0.7295 13.81 3600 0.5420 0.8544 0.8738 0.8544 0.8535 0.8992
0.7295 14.0 3650 0.5384 0.8652 0.8817 0.8652 0.8635 0.9049
0.6874 14.19 3700 0.4911 0.8598 0.8753 0.8598 0.8593 0.9019
0.6874 14.38 3750 0.5172 0.8598 0.8826 0.8598 0.8588 0.9011
0.6874 14.57 3800 0.5024 0.8598 0.8814 0.8598 0.8592 0.9019
0.6874 14.77 3850 0.5202 0.8679 0.8908 0.8679 0.8667 0.9067

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1
Downloads last month
25
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for fydhfzh/wav2vec2-classifier-aug

Finetuned
(703)
this model