hubert-classifier-aug-large

This model is a fine-tuned version of facebook/hubert-base-ls960 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5737
  • Accuracy: 0.8518
  • Precision: 0.8710
  • Recall: 0.8518
  • F1: 0.8459
  • Binary: 0.8946

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Binary
No log 0.1 50 4.2254 0.0296 0.0051 0.0296 0.0050 0.2472
No log 0.2 100 3.6044 0.0499 0.0034 0.0499 0.0062 0.3265
No log 0.29 150 3.4158 0.0620 0.0137 0.0620 0.0182 0.3314
No log 0.39 200 3.1970 0.0943 0.0301 0.0943 0.0402 0.3632
No log 0.49 250 3.1359 0.1253 0.0438 0.1253 0.0550 0.3786
No log 0.59 300 2.8477 0.1941 0.0877 0.1941 0.1046 0.4311
No log 0.69 350 2.5968 0.2291 0.1477 0.2291 0.1464 0.4569
No log 0.78 400 2.3869 0.3019 0.2233 0.3019 0.1981 0.5092
No log 0.88 450 2.2318 0.3342 0.2618 0.3342 0.2491 0.5337
3.3246 0.98 500 2.0726 0.4057 0.3384 0.4057 0.3220 0.5819
3.3246 1.08 550 1.9390 0.4043 0.3492 0.4043 0.3267 0.5813
3.3246 1.18 600 1.8723 0.4394 0.3484 0.4394 0.3548 0.6063
3.3246 1.27 650 1.7220 0.5081 0.4868 0.5081 0.4462 0.6571
3.3246 1.37 700 1.5947 0.5283 0.4654 0.5283 0.4610 0.6691
3.3246 1.47 750 1.5081 0.5512 0.5536 0.5512 0.5010 0.6863
3.3246 1.57 800 1.3927 0.6078 0.6098 0.6078 0.5698 0.7252
3.3246 1.67 850 1.2970 0.6361 0.6405 0.6361 0.6036 0.7445
3.3246 1.76 900 1.2218 0.6658 0.6832 0.6658 0.6470 0.7663
3.3246 1.86 950 1.2574 0.6725 0.7113 0.6725 0.6538 0.7698
2.1116 1.96 1000 1.0768 0.7224 0.7288 0.7224 0.7073 0.8058
2.1116 2.06 1050 1.0574 0.7318 0.7445 0.7318 0.7160 0.8113
2.1116 2.16 1100 0.9994 0.7332 0.7526 0.7332 0.7171 0.8139
2.1116 2.25 1150 0.9494 0.7358 0.7497 0.7358 0.7196 0.8159
2.1116 2.35 1200 0.8719 0.7588 0.7743 0.7588 0.7456 0.8306
2.1116 2.45 1250 0.8674 0.7642 0.7862 0.7642 0.7530 0.8345
2.1116 2.55 1300 0.8805 0.7857 0.8075 0.7857 0.7754 0.8487
2.1116 2.65 1350 0.8389 0.7682 0.7955 0.7682 0.7601 0.8377
2.1116 2.75 1400 0.8189 0.7763 0.7913 0.7763 0.7640 0.8411
2.1116 2.84 1450 0.7739 0.7871 0.7881 0.7871 0.7737 0.8491
1.5744 2.94 1500 0.7971 0.7668 0.7887 0.7668 0.7567 0.8360
1.5744 3.04 1550 0.7348 0.7844 0.7998 0.7844 0.7781 0.8478
1.5744 3.14 1600 0.7241 0.7925 0.8115 0.7925 0.7838 0.8534
1.5744 3.24 1650 0.7763 0.7749 0.8010 0.7749 0.7709 0.8411
1.5744 3.33 1700 0.6638 0.8073 0.8278 0.8073 0.8036 0.8646
1.5744 3.43 1750 0.7065 0.8100 0.8339 0.8100 0.8021 0.8656
1.5744 3.53 1800 0.7391 0.7951 0.8212 0.7951 0.7878 0.8561
1.5744 3.63 1850 0.6450 0.8181 0.8385 0.8181 0.8125 0.8721
1.5744 3.73 1900 0.6834 0.8113 0.8342 0.8113 0.8076 0.8670
1.5744 3.82 1950 0.6616 0.8113 0.8311 0.8113 0.8025 0.8668
1.312 3.92 2000 0.6177 0.8194 0.8388 0.8194 0.8149 0.8718
1.312 4.02 2050 0.6550 0.8059 0.8338 0.8059 0.7979 0.8637
1.312 4.12 2100 0.5995 0.8261 0.8438 0.8261 0.8206 0.8772
1.312 4.22 2150 0.6833 0.8127 0.8340 0.8127 0.8069 0.8678
1.312 4.31 2200 0.6185 0.8275 0.8438 0.8275 0.8232 0.8787
1.312 4.41 2250 0.6334 0.8167 0.8364 0.8167 0.8111 0.8708
1.312 4.51 2300 0.6100 0.8208 0.8372 0.8208 0.8171 0.8725
1.312 4.61 2350 0.5953 0.8302 0.8477 0.8302 0.8268 0.8805
1.312 4.71 2400 0.5847 0.8194 0.8278 0.8194 0.8125 0.8735
1.312 4.8 2450 0.5932 0.8329 0.8475 0.8329 0.8295 0.8814
1.1711 4.9 2500 0.5890 0.8329 0.8511 0.8329 0.8285 0.8811
1.1711 5.0 2550 0.5662 0.8437 0.8574 0.8437 0.8374 0.8885
1.1711 5.1 2600 0.5648 0.8531 0.8657 0.8531 0.8494 0.8953
1.1711 5.2 2650 0.5805 0.8410 0.8555 0.8410 0.8385 0.8858
1.1711 5.29 2700 0.5372 0.8477 0.8631 0.8477 0.8426 0.8919
1.1711 5.39 2750 0.5698 0.8491 0.8661 0.8491 0.8481 0.8919
1.1711 5.49 2800 0.5499 0.8571 0.8756 0.8571 0.8525 0.8993
1.1711 5.59 2850 0.5643 0.8504 0.8671 0.8504 0.8477 0.8941
1.1711 5.69 2900 0.5834 0.8491 0.8649 0.8491 0.8461 0.8923
1.1711 5.78 2950 0.5306 0.8612 0.8760 0.8612 0.8580 0.9004
1.078 5.88 3000 0.5276 0.8571 0.8738 0.8571 0.8532 0.8980
1.078 5.98 3050 0.5294 0.8531 0.8792 0.8531 0.8507 0.8960
1.078 6.08 3100 0.5305 0.8558 0.8740 0.8558 0.8525 0.8974
1.078 6.18 3150 0.5546 0.8518 0.8700 0.8518 0.8488 0.8946
1.078 6.27 3200 0.5292 0.8652 0.8844 0.8652 0.8613 0.9049
1.078 6.37 3250 0.5871 0.8288 0.8527 0.8288 0.8270 0.8796
1.078 6.47 3300 0.5549 0.8477 0.8656 0.8477 0.8438 0.8914
1.078 6.57 3350 0.5559 0.8410 0.8544 0.8410 0.8349 0.8876
1.078 6.67 3400 0.5496 0.8531 0.8688 0.8531 0.8496 0.8961
1.078 6.76 3450 0.5737 0.8518 0.8710 0.8518 0.8459 0.8946

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1
Downloads last month
11
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for fydhfzh/hubert-classifier-aug-large

Finetuned
(71)
this model