hubert-classifier-aug-fold-1

This model is a fine-tuned version of facebook/hubert-base-ls960 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6784
  • Accuracy: 0.8612
  • Precision: 0.8732
  • Recall: 0.8612
  • F1: 0.8586
  • Binary: 0.9035

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Binary
No log 0.24 50 4.4161 0.0180 0.0182 0.0180 0.0106 0.1504
No log 0.48 100 4.2802 0.0375 0.0091 0.0375 0.0074 0.3082
No log 0.72 150 3.9834 0.0502 0.0086 0.0502 0.0109 0.3226
No log 0.96 200 3.7286 0.0569 0.0236 0.0569 0.0159 0.3276
4.2271 1.2 250 3.4426 0.0891 0.0270 0.0891 0.0322 0.3596
4.2271 1.44 300 3.2540 0.1169 0.0601 0.1169 0.0604 0.3788
4.2271 1.68 350 3.1869 0.1176 0.0721 0.1176 0.0598 0.3683
4.2271 1.92 400 2.8711 0.1618 0.1145 0.1618 0.0984 0.4101
3.3668 2.16 450 2.6606 0.2644 0.1518 0.2644 0.1626 0.4816
3.3668 2.4 500 2.3190 0.3670 0.2659 0.3670 0.2721 0.5538
3.3668 2.63 550 2.0561 0.4120 0.3507 0.4120 0.3239 0.5857
3.3668 2.87 600 1.8485 0.4764 0.4155 0.4764 0.4052 0.6330
2.5092 3.11 650 1.7040 0.5296 0.4975 0.5296 0.4731 0.6697
2.5092 3.35 700 1.4804 0.5970 0.5614 0.5970 0.5443 0.7167
2.5092 3.59 750 1.3268 0.6434 0.6271 0.6434 0.6047 0.7488
2.5092 3.83 800 1.2244 0.6749 0.6423 0.6749 0.6342 0.7728
1.771 4.07 850 1.0787 0.7348 0.7587 0.7348 0.7168 0.8142
1.771 4.31 900 1.0527 0.7281 0.7380 0.7281 0.7070 0.8097
1.771 4.55 950 0.9342 0.7596 0.7759 0.7596 0.7454 0.8314
1.771 4.79 1000 0.8399 0.7880 0.7986 0.7880 0.7766 0.8507
1.3767 5.03 1050 0.8286 0.7970 0.8035 0.7970 0.7883 0.8575
1.3767 5.27 1100 0.8207 0.7888 0.8016 0.7888 0.7823 0.8524
1.3767 5.51 1150 0.7596 0.8112 0.8180 0.8112 0.8033 0.8690
1.3767 5.75 1200 0.7087 0.8067 0.8139 0.8067 0.8007 0.8658
1.3767 5.99 1250 0.7088 0.8045 0.8178 0.8045 0.7991 0.8637
1.1079 6.23 1300 0.7062 0.8150 0.8256 0.8150 0.8101 0.8698
1.1079 6.47 1350 0.6382 0.8285 0.8385 0.8285 0.8272 0.8810
1.1079 6.71 1400 0.6746 0.8240 0.8386 0.8240 0.8209 0.8783
1.1079 6.95 1450 0.6312 0.8367 0.8523 0.8367 0.8347 0.8867
0.9652 7.19 1500 0.6707 0.8255 0.8438 0.8255 0.8215 0.8775
0.9652 7.43 1550 0.6126 0.8479 0.8578 0.8479 0.8449 0.8942
0.9652 7.66 1600 0.6500 0.8427 0.8528 0.8427 0.8397 0.8912
0.9652 7.9 1650 0.6272 0.8412 0.8512 0.8412 0.8375 0.8885
0.8436 8.14 1700 0.6499 0.8509 0.8630 0.8509 0.8470 0.8970
0.8436 8.38 1750 0.6836 0.8337 0.8423 0.8337 0.8294 0.8841
0.8436 8.62 1800 0.6261 0.8487 0.8614 0.8487 0.8478 0.8951
0.8436 8.86 1850 0.5969 0.8584 0.8631 0.8584 0.8555 0.9019
0.7658 9.1 1900 0.6646 0.8397 0.8561 0.8397 0.8357 0.8872
0.7658 9.34 1950 0.5753 0.8644 0.8715 0.8644 0.8624 0.9049
0.7658 9.58 2000 0.6675 0.8404 0.8511 0.8404 0.8365 0.8885
0.7658 9.82 2050 0.6864 0.8360 0.8479 0.8360 0.8319 0.8859
0.6854 10.06 2100 0.6580 0.8479 0.8599 0.8479 0.8435 0.8948
0.6854 10.3 2150 0.6755 0.8509 0.8627 0.8509 0.8487 0.8963
0.6854 10.54 2200 0.6949 0.8524 0.8625 0.8524 0.8499 0.8969
0.6854 10.78 2250 0.7240 0.8434 0.8511 0.8434 0.8411 0.8905
0.6444 11.02 2300 0.6266 0.8502 0.8607 0.8502 0.8462 0.8950
0.6444 11.26 2350 0.6061 0.8674 0.8795 0.8674 0.8647 0.9073
0.6444 11.5 2400 0.6550 0.8509 0.8616 0.8509 0.8477 0.8955
0.6444 11.74 2450 0.6460 0.8457 0.8553 0.8457 0.8441 0.8913
0.6444 11.98 2500 0.5699 0.8577 0.8679 0.8577 0.8572 0.9010
0.6038 12.22 2550 0.6236 0.8517 0.8576 0.8517 0.8491 0.8963
0.6038 12.46 2600 0.5718 0.8674 0.8766 0.8674 0.8639 0.9071
0.6038 12.69 2650 0.5904 0.8644 0.8753 0.8644 0.8649 0.9061
0.6038 12.93 2700 0.6894 0.8487 0.8614 0.8487 0.8470 0.8951
0.5691 13.17 2750 0.6029 0.8652 0.8777 0.8652 0.8643 0.9064
0.5691 13.41 2800 0.6195 0.8727 0.8842 0.8727 0.8721 0.9105
0.5691 13.65 2850 0.6300 0.8682 0.8776 0.8682 0.8668 0.9076
0.5691 13.89 2900 0.6413 0.8644 0.8729 0.8644 0.8618 0.9058
0.5315 14.13 2950 0.7475 0.8509 0.8632 0.8509 0.8477 0.8958
0.5315 14.37 3000 0.6623 0.8659 0.8756 0.8659 0.8641 0.9069
0.5315 14.61 3050 0.6826 0.8547 0.8643 0.8547 0.8522 0.8978
0.5315 14.85 3100 0.6302 0.8712 0.8797 0.8712 0.8694 0.9097
0.5031 15.09 3150 0.5901 0.8787 0.8846 0.8787 0.8769 0.9157
0.5031 15.33 3200 0.6089 0.8652 0.8746 0.8652 0.8632 0.9056
0.5031 15.57 3250 0.6068 0.8719 0.8783 0.8719 0.8708 0.9108
0.5031 15.81 3300 0.6462 0.8652 0.8738 0.8652 0.8632 0.9056
0.4759 16.05 3350 0.6459 0.8607 0.8718 0.8607 0.8591 0.9013
0.4759 16.29 3400 0.6432 0.8644 0.8741 0.8644 0.8629 0.9052
0.4759 16.53 3450 0.6266 0.8652 0.8731 0.8652 0.8640 0.9058
0.4759 16.77 3500 0.5806 0.8824 0.8904 0.8824 0.8823 0.9170
0.4731 17.01 3550 0.6293 0.8697 0.8792 0.8697 0.8698 0.9089
0.4731 17.25 3600 0.6389 0.8682 0.8786 0.8682 0.8681 0.9079
0.4731 17.49 3650 0.6320 0.8712 0.8773 0.8712 0.8696 0.9098
0.4731 17.72 3700 0.6363 0.8742 0.8812 0.8742 0.8724 0.9128
0.4731 17.96 3750 0.6116 0.8854 0.8926 0.8854 0.8841 0.9199
0.4605 18.2 3800 0.6574 0.8794 0.8897 0.8794 0.8778 0.9161
0.4605 18.44 3850 0.6271 0.8749 0.8842 0.8749 0.8731 0.9135
0.4605 18.68 3900 0.6418 0.8749 0.8830 0.8749 0.8736 0.9139
0.4605 18.92 3950 0.6398 0.8704 0.8825 0.8704 0.8688 0.9103
0.4339 19.16 4000 0.6366 0.8689 0.8760 0.8689 0.8664 0.9085
0.4339 19.4 4050 0.6164 0.8727 0.8824 0.8727 0.8716 0.9110
0.4339 19.64 4100 0.6044 0.8846 0.8904 0.8846 0.8837 0.9190
0.4339 19.88 4150 0.6749 0.8742 0.8807 0.8742 0.8716 0.9123
0.4057 20.12 4200 0.7049 0.8637 0.8748 0.8637 0.8617 0.9059
0.4057 20.36 4250 0.6698 0.8727 0.8821 0.8727 0.8718 0.9116
0.4057 20.6 4300 0.6165 0.8779 0.8900 0.8779 0.8776 0.9146
0.4057 20.84 4350 0.5957 0.8697 0.8791 0.8697 0.8688 0.9087
0.4144 21.08 4400 0.6662 0.8644 0.8741 0.8644 0.8644 0.9047
0.4144 21.32 4450 0.7379 0.8487 0.8573 0.8487 0.8481 0.8942

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1
Downloads last month
34
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for fydhfzh/hubert-classifier-aug-fold-1

Finetuned
(71)
this model