drawatoon-v1 / transformer /pixart_transformer_modified.py
fumeisama's picture
Create pixart_transformer_modified.py
a5418f5 verified
raw
history blame contribute delete
42.8 kB
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional, Union, Tuple, List
import torch
from torch import nn
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import is_torch_version, logging, deprecate
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.attention_processor import Attention, AttentionProcessor, AttnProcessor, FusedAttnProcessor2_0, JointAttnProcessor2_0
from diffusers.models.embeddings import PatchEmbed, PixArtAlphaTextProjection
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm, SD35AdaLayerNormZeroX, AdaLayerNormSingle
from torch.nn.utils.rnn import pad_sequence
from einops import rearrange
import numpy as np
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU, FP32SiLU, LinearActivation, SwiGLU
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class PixArtTransformer2DModel(ModelMixin, ConfigMixin):
r"""
A 2D Transformer model as introduced in PixArt family of models (https://arxiv.org/abs/2310.00426,
https://arxiv.org/abs/2403.04692).
Parameters:
num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (int, optional, defaults to 72): The number of channels in each head.
in_channels (int, defaults to 4): The number of channels in the input.
out_channels (int, optional):
The number of channels in the output. Specify this parameter if the output channel number differs from the
input.
num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use.
dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks.
norm_num_groups (int, optional, defaults to 32):
Number of groups for group normalization within Transformer blocks.
cross_attention_dim (int, optional):
The dimensionality for cross-attention layers, typically matching the encoder's hidden dimension.
attention_bias (bool, optional, defaults to True):
Configure if the Transformer blocks' attention should contain a bias parameter.
sample_size (int, defaults to 128):
The width of the latent images. This parameter is fixed during training.
patch_size (int, defaults to 2):
Size of the patches the model processes, relevant for architectures working on non-sequential data.
activation_fn (str, optional, defaults to "gelu-approximate"):
Activation function to use in feed-forward networks within Transformer blocks.
num_embeds_ada_norm (int, optional, defaults to 1000):
Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during
inference.
upcast_attention (bool, optional, defaults to False):
If true, upcasts the attention mechanism dimensions for potentially improved performance.
norm_type (str, optional, defaults to "ada_norm_zero"):
Specifies the type of normalization used, can be 'ada_norm_zero'.
norm_elementwise_affine (bool, optional, defaults to False):
If true, enables element-wise affine parameters in the normalization layers.
norm_eps (float, optional, defaults to 1e-6):
A small constant added to the denominator in normalization layers to prevent division by zero.
interpolation_scale (int, optional): Scale factor to use during interpolating the position embeddings.
use_additional_conditions (bool, optional): If we're using additional conditions as inputs.
attention_type (str, optional, defaults to "default"): Kind of attention mechanism to be used.
caption_channels (int, optional, defaults to None):
Number of channels to use for projecting the caption embeddings.
use_linear_projection (bool, optional, defaults to False):
Deprecated argument. Will be removed in a future version.
num_vector_embeds (bool, optional, defaults to False):
Deprecated argument. Will be removed in a future version.
"""
_supports_gradient_checkpointing = True
_no_split_modules = ["BasicTransformerBlock", "PatchEmbed"]
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 72,
in_channels: int = 4,
out_channels: Optional[int] = 8,
num_layers: int = 28,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = 1152,
attention_bias: bool = True,
sample_size: int = 128,
patch_size: int = 2,
activation_fn: str = "gelu-approximate",
num_embeds_ada_norm: Optional[int] = 1000,
upcast_attention: bool = False,
norm_type: str = "ada_norm_single",
norm_elementwise_affine: bool = False,
norm_eps: float = 1e-6,
interpolation_scale: Optional[int] = None,
use_additional_conditions: Optional[bool] = None,
caption_channels: Optional[int] = None,
attention_type: Optional[str] = "default",
):
super().__init__()
# Validate inputs.
if norm_type != "ada_norm_single":
raise NotImplementedError(
f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
)
elif norm_type == "ada_norm_single" and num_embeds_ada_norm is None:
raise ValueError(
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
)
# Set some common variables used across the board.
self.attention_head_dim = attention_head_dim
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
self.out_channels = in_channels if out_channels is None else out_channels
if use_additional_conditions is None:
if sample_size == 128:
use_additional_conditions = True
else:
use_additional_conditions = False
self.use_additional_conditions = use_additional_conditions
self.gradient_checkpointing = False
# 2. Initialize the position embedding and transformer blocks.
self.height = self.config.sample_size
self.width = self.config.sample_size
interpolation_scale = (
self.config.interpolation_scale
if self.config.interpolation_scale is not None
else max(self.config.sample_size // 64, 1)
)
self.pos_embed = PatchEmbed(
height=self.config.sample_size,
width=self.config.sample_size,
patch_size=self.config.patch_size,
in_channels=self.config.in_channels,
embed_dim=self.inner_dim,
interpolation_scale=interpolation_scale,
)
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
self.inner_dim,
self.config.num_attention_heads,
self.config.attention_head_dim,
dropout=self.config.dropout,
cross_attention_dim=self.config.cross_attention_dim,
activation_fn=self.config.activation_fn,
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
attention_bias=self.config.attention_bias,
upcast_attention=self.config.upcast_attention,
norm_type=norm_type,
norm_elementwise_affine=self.config.norm_elementwise_affine,
norm_eps=self.config.norm_eps,
attention_type=self.config.attention_type,
)
for _ in range(self.config.num_layers)
]
)
# 3. Output blocks.
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
self.proj_out = nn.Linear(self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels)
self.adaln_single = AdaLayerNormSingle(
self.inner_dim, use_additional_conditions=self.use_additional_conditions
)
self.caption_projection = None
if self.config.caption_channels is not None:
self.caption_projection = PixArtAlphaTextProjection(
in_features=self.config.caption_channels, hidden_size=self.inner_dim
)
self.ip_adapter = IPAdapter()
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
Safe to just use `AttnProcessor()` as PixArt doesn't have any exotic attention processors in default model.
"""
self.set_attn_processor(AttnProcessor())
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
def fuse_qkv_projections(self):
"""
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
are fused. For cross-attention modules, key and value projection matrices are fused.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
self.original_attn_processors = None
for _, attn_processor in self.attn_processors.items():
if "Added" in str(attn_processor.__class__.__name__):
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
self.original_attn_processors = self.attn_processors
for module in self.modules():
if isinstance(module, Attention):
module.fuse_projections(fuse=True)
self.set_attn_processor(FusedAttnProcessor2_0())
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
def unfuse_qkv_projections(self):
"""Disables the fused QKV projection if enabled.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
if self.original_attn_processors is not None:
self.set_attn_processor(self.original_attn_processors)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_attention_mask: torch.Tensor,
ip_hidden_states: torch.Tensor = None,
ip_attention_mask: torch.Tensor = None,
text_bboxes = None,
character_bboxes = None,
reference_embeddings = None,
cfg_on_10_percent = False,
timestep: Optional[torch.LongTensor] = None,
added_cond_kwargs: Dict[str, torch.Tensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
return_dict: bool = True,
):
"""
The [`PixArtTransformer2DModel`] forward method.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
Input `hidden_states`.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
timestep (`torch.LongTensor`, *optional*):
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
added_cond_kwargs: (`Dict[str, Any]`, *optional*): Additional conditions to be used as inputs.
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
encoder_attention_mask ( `torch.Tensor`, *optional*):
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
* Mask `(batch, sequence_length)` True = keep, False = discard.
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
above. This bias will be added to the cross-attention scores.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
if self.use_additional_conditions and added_cond_kwargs is None:
raise ValueError("`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`.")
# 0. Prompt Embedding Modification
assert (ip_hidden_states is None) ^ (text_bboxes is None and character_bboxes is None and reference_embeddings is None)
if ip_hidden_states is None:
ip_hidden_states, ip_attention_mask = self.ip_adapter(text_bboxes, character_bboxes, reference_embeddings, cfg_on_10_percent)
# 1. Input
batch_size = len(hidden_states)
heights = [h.shape[-2] // self.config.patch_size for h in hidden_states]
widths = [w.shape[-1] // self.config.patch_size for w in hidden_states]
hidden_states = [self.pos_embed(hs[None])[0] for hs in hidden_states]
attention_mask = [torch.ones(x.shape[0]) for x in hidden_states]
hidden_states = pad_sequence(hidden_states, batch_first=True)
attention_mask = pad_sequence(attention_mask, batch_first=True, padding_value=0).bool().to(hidden_states.device)
original_attention_mask = attention_mask
timestep, embedded_timestep = self.adaln_single(
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
)
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
if attention_mask is not None and attention_mask.ndim == 2:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
if self.caption_projection is not None:
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
# 2. Blocks
for block in self.transformer_blocks:
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
ip_hidden_states,
ip_attention_mask,
timestep,
cross_attention_kwargs,
None,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
ip_hidden_states=ip_hidden_states,
ip_attention_mask=ip_attention_mask,
timestep=timestep,
cross_attention_kwargs=cross_attention_kwargs,
class_labels=None,
)
# 3. Output
shift, scale = (
self.scale_shift_table[None] + embedded_timestep[:, None].to(self.scale_shift_table.device)
).chunk(2, dim=1)
hidden_states = self.norm_out(hidden_states)
# Modulation
hidden_states = hidden_states * (1 + scale.to(hidden_states.device)) + shift.to(hidden_states.device)
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.squeeze(1)
# unpatchify
outputs = []
for idx, (height, width) in enumerate(zip(heights, widths)):
_hidden_state = hidden_states[idx][original_attention_mask[idx]].reshape(
shape=(height, width, self.config.patch_size, self.config.patch_size, self.out_channels)
)
_hidden_state = torch.einsum("hwpqc->chpwq", _hidden_state)
outputs.append(_hidden_state.reshape(
shape=(self.out_channels, height * self.config.patch_size, width * self.config.patch_size)
))
if len(set([x.shape for x in outputs])) == 1:
outputs = torch.stack(outputs)
if not return_dict:
return (outputs,)
return Transformer2DModelOutput(sample=outputs)
class RBFEmbedding(nn.Module):
def __init__(self, output_dim, num_kernels=32):
super().__init__()
self.means = nn.Parameter(torch.linspace(0, 1, num_kernels))
self.scales = nn.Parameter(torch.ones(num_kernels) * 20)
self.proj = nn.Linear(num_kernels * 4, output_dim)
def forward(self, box):
box = torch.tensor(box, dtype=self.means.dtype, device=self.means.device)
x = box.unsqueeze(-1) - self.means
x = torch.exp(-0.5 * (x * self.scales.unsqueeze(0)) ** 2)
x = x.reshape(-1)
return self.proj(x)
def participate_in_grad(self):
return self.proj.weight.sum() + self.proj.bias.sum() + self.means.sum() + self.scales.sum()
class RoPEPositionalEmbedding(nn.Module):
def __init__(self, embedding_dim, base=10000):
super().__init__()
self.embedding_dim = embedding_dim
assert embedding_dim % 2 == 0, "Embedding dimension must be even"
half_dim = embedding_dim // 2
freqs = 1.0 / (base ** (torch.arange(0, half_dim).float() / half_dim))
self.register_buffer("freqs", freqs)
def forward(self, x, positions):
orig_dtype = x.dtype
x = x.float()
positions = positions.float()
x_2d = rearrange(x, '... (d two) -> ... d two', two=2) # [..., dim/2, 2]
positions = positions.unsqueeze(-1) * self.freqs.float() # [seq_len, dim/2]
sin = positions.sin().unsqueeze(-1) # [seq_len, dim/2, 1]
cos = positions.cos().unsqueeze(-1) # [seq_len, dim/2, 1]
x_out = torch.cat([
x_2d[..., 0:1] * cos - x_2d[..., 1:2] * sin,
x_2d[..., 0:1] * sin + x_2d[..., 1:2] * cos,
], dim=-1)
output = rearrange(x_out, '... d two -> ... (d two)')
return output.to(orig_dtype)
class IPAdapter(ModelMixin):
def __init__(self):
super().__init__()
self.embedding_dim = 1152
self.box_embedding = RBFEmbedding(self.embedding_dim)
self.pos_embedding = RoPEPositionalEmbedding(self.embedding_dim)
self.text_cls_embedding = nn.Embedding(1, self.embedding_dim)
self.character_cls_embedding = nn.Embedding(4, self.embedding_dim)
self.ref_embedding_proj = nn.Linear(768, 4 * self.embedding_dim)
self.void_ip_embed = nn.Embedding(1, self.embedding_dim)
self.negative_ip_embed = nn.Embedding(1, self.embedding_dim)
self.norm = nn.LayerNorm(self.embedding_dim)
def participate_in_grad(self):
return sum([
self.box_embedding.participate_in_grad(),
self.text_cls_embedding.weight.sum(),
self.character_cls_embedding.weight.sum(),
self.ref_embedding_proj.weight.sum(),
self.ref_embedding_proj.bias.sum(),
self.void_ip_embed.weight.sum(),
self.negative_ip_embed.weight.sum(),
self.norm.weight.sum(),
self.norm.bias.sum()
])
def embed_text(self, box):
box_embedding = self.box_embedding(box)
return torch.stack([
box_embedding,
*self.text_cls_embedding.weight,
])
def embed_character(self, character_bbox, reference_embedding):
box_embedding = self.box_embedding(character_bbox)
if reference_embedding is None:
character_embedding = self.character_cls_embedding.weight
else:
character_embedding = self.ref_embedding_proj(reference_embedding.unsqueeze(0))
character_embedding = rearrange(character_embedding, "1 (c h) -> h c", h=4)
return torch.stack([
box_embedding,
*character_embedding
])
def apply_position_embedding(self, embeddings):
seq_length = embeddings.shape[0]
positions = torch.arange(seq_length, device=embeddings.device, dtype=embeddings.dtype)
return self.pos_embedding(embeddings, positions)
def forward(self, batch_text_bboxes, batch_character_bboxes, batch_reference_embeddings, cfg_on_10_percent):
ip_embeddings = []
for batch_idx, (text_bboxes, character_bboxes, reference_embeddings) in enumerate(zip(batch_text_bboxes, batch_character_bboxes, batch_reference_embeddings)):
text_embeddings = [self.embed_text(box) for box in text_bboxes]
character_embeddings = [self.embed_character(box, reference_embeddings[i]) for i, box in enumerate(character_bboxes)]
if len(text_embeddings) + len(character_embeddings) == 0:
ip_embeddings.append(self.void_ip_embed.weight)
continue
ip_embedding = torch.cat(text_embeddings + character_embeddings, dim=0)
ip_embeddings.append(self.apply_position_embedding(ip_embedding))
ip_mask = [torch.ones(x.shape[0], dtype=torch.bool, device=x.device) for x in ip_embeddings]
ip_embeddings = pad_sequence(ip_embeddings, batch_first=True, padding_value=0)
ip_mask = pad_sequence(ip_mask, batch_first=True, padding_value=0).bool()
if cfg_on_10_percent:
last_10_percent = int(len(ip_embeddings) * 0.1)
ip_embeddings[-last_10_percent:] = self.negative_ip_embed.weight
ip_mask[-last_10_percent:] = 0
ip_mask[-last_10_percent:, :1] = 1
return self.norm(ip_embeddings), ip_mask
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
# "feed_forward_chunk_size" can be used to save memory
if hidden_states.shape[chunk_dim] % chunk_size != 0:
raise ValueError(
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
)
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
ff_output = torch.cat(
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
dim=chunk_dim,
)
return ff_output
@maybe_allow_in_graph
class GatedSelfAttentionDense(nn.Module):
r"""
A gated self-attention dense layer that combines visual features and object features.
Parameters:
query_dim (`int`): The number of channels in the query.
context_dim (`int`): The number of channels in the context.
n_heads (`int`): The number of heads to use for attention.
d_head (`int`): The number of channels in each head.
"""
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
super().__init__()
# we need a linear projection since we need cat visual feature and obj feature
self.linear = nn.Linear(context_dim, query_dim)
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
self.ff = FeedForward(query_dim, activation_fn="geglu")
self.norm1 = nn.LayerNorm(query_dim)
self.norm2 = nn.LayerNorm(query_dim)
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
self.enabled = True
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
if not self.enabled:
return x
n_visual = x.shape[1]
objs = self.linear(objs)
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
return x
@maybe_allow_in_graph
class BasicTransformerBlock(nn.Module):
r"""
A basic Transformer block.
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm (:
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
attention_bias (:
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
only_cross_attention (`bool`, *optional*):
Whether to use only cross-attention layers. In this case two cross attention layers are used.
double_self_attention (`bool`, *optional*):
Whether to use two self-attention layers. In this case no cross attention layers are used.
upcast_attention (`bool`, *optional*):
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
Whether to use learnable elementwise affine parameters for normalization.
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
final_dropout (`bool` *optional*, defaults to False):
Whether to apply a final dropout after the last feed-forward layer.
attention_type (`str`, *optional*, defaults to `"default"`):
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
positional_embeddings (`str`, *optional*, defaults to `None`):
The type of positional embeddings to apply to.
num_positional_embeddings (`int`, *optional*, defaults to `None`):
The maximum number of positional embeddings to apply.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
dropout=0.0,
cross_attention_dim: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
attention_bias: bool = False,
only_cross_attention: bool = False,
double_self_attention: bool = False,
upcast_attention: bool = False,
norm_elementwise_affine: bool = True,
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
norm_eps: float = 1e-5,
final_dropout: bool = False,
attention_type: str = "default",
positional_embeddings: Optional[str] = None,
num_positional_embeddings: Optional[int] = None,
ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
ada_norm_bias: Optional[int] = None,
ff_inner_dim: Optional[int] = None,
ff_bias: bool = True,
attention_out_bias: bool = True,
):
super().__init__()
self.dim = dim
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
self.dropout = dropout
self.cross_attention_dim = cross_attention_dim
self.activation_fn = activation_fn
self.attention_bias = attention_bias
self.double_self_attention = double_self_attention
self.norm_elementwise_affine = norm_elementwise_affine
self.positional_embeddings = positional_embeddings
self.num_positional_embeddings = num_positional_embeddings
self.only_cross_attention = only_cross_attention
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
self.attn1 = Attention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
upcast_attention=upcast_attention,
out_bias=attention_out_bias,
)
# 2. Cross-Attn
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
out_bias=attention_out_bias,
)
self.ip_attn = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
out_bias=attention_out_bias,
)
self.ip_attn.to_out[0].weight.data.zero_()
self.ip_attn.to_out[0].bias.data.zero_()
# 3. Feed-forward
self.ff = FeedForward(
dim,
dropout=dropout,
activation_fn=activation_fn,
final_dropout=final_dropout,
inner_dim=ff_inner_dim,
bias=ff_bias,
)
# 5. Scale-shift for PixArt-Alpha.
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
# Sets chunk feed-forward
self._chunk_size = chunk_size
self._chunk_dim = dim
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
ip_hidden_states: Optional[torch.Tensor] = None,
ip_attention_mask: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
) -> torch.Tensor:
if cross_attention_kwargs is not None:
if cross_attention_kwargs.get("scale", None) is not None:
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
# Notice that normalization is always applied before the real computation in the following blocks.
# 0. Self-Attention
batch_size = hidden_states.shape[0]
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
).chunk(6, dim=1)
norm_hidden_states = self.norm1(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
attn_output = gate_msa * attn_output
hidden_states = attn_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
# 3. Cross-Attention
attn_output = self.attn2(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
ip_attn_output = self.ip_attn(
hidden_states,
encoder_hidden_states=ip_hidden_states,
attention_mask=ip_attention_mask,
**cross_attention_kwargs,
)
hidden_states = attn_output + ip_attn_output + hidden_states
# 4. Feed-forward
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
else:
ff_output = self.ff(norm_hidden_states)
ff_output = gate_mlp * ff_output
hidden_states = ff_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
return hidden_states
class FeedForward(nn.Module):
r"""
A feed-forward layer.
Parameters:
dim (`int`): The number of channels in the input.
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
"""
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
mult: int = 4,
dropout: float = 0.0,
activation_fn: str = "geglu",
final_dropout: bool = False,
inner_dim=None,
bias: bool = True,
):
super().__init__()
if inner_dim is None:
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
act_fn = GELU(dim, inner_dim, bias=bias)
if activation_fn == "gelu-approximate":
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
elif activation_fn == "geglu":
act_fn = GEGLU(dim, inner_dim, bias=bias)
elif activation_fn == "geglu-approximate":
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
elif activation_fn == "swiglu":
act_fn = SwiGLU(dim, inner_dim, bias=bias)
elif activation_fn == "linear-silu":
act_fn = LinearActivation(dim, inner_dim, bias=bias, activation="silu")
self.net = nn.ModuleList([])
# project in
self.net.append(act_fn)
# project dropout
self.net.append(nn.Dropout(dropout))
# project out
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(dropout))
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
if len(args) > 0 or kwargs.get("scale", None) is not None:
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
deprecate("scale", "1.0.0", deprecation_message)
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states