|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, Optional, Union, Tuple, List |
|
|
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.utils import is_torch_version, logging, deprecate |
|
from diffusers.utils.torch_utils import maybe_allow_in_graph |
|
from diffusers.models.attention_processor import Attention, AttentionProcessor, AttnProcessor, FusedAttnProcessor2_0, JointAttnProcessor2_0 |
|
from diffusers.models.embeddings import PatchEmbed, PixArtAlphaTextProjection |
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm, SD35AdaLayerNormZeroX, AdaLayerNormSingle |
|
from torch.nn.utils.rnn import pad_sequence |
|
from einops import rearrange |
|
import numpy as np |
|
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU, FP32SiLU, LinearActivation, SwiGLU |
|
from diffusers.models.embeddings import SinusoidalPositionalEmbedding |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class PixArtTransformer2DModel(ModelMixin, ConfigMixin): |
|
r""" |
|
A 2D Transformer model as introduced in PixArt family of models (https://arxiv.org/abs/2310.00426, |
|
https://arxiv.org/abs/2403.04692). |
|
|
|
Parameters: |
|
num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention. |
|
attention_head_dim (int, optional, defaults to 72): The number of channels in each head. |
|
in_channels (int, defaults to 4): The number of channels in the input. |
|
out_channels (int, optional): |
|
The number of channels in the output. Specify this parameter if the output channel number differs from the |
|
input. |
|
num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use. |
|
dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks. |
|
norm_num_groups (int, optional, defaults to 32): |
|
Number of groups for group normalization within Transformer blocks. |
|
cross_attention_dim (int, optional): |
|
The dimensionality for cross-attention layers, typically matching the encoder's hidden dimension. |
|
attention_bias (bool, optional, defaults to True): |
|
Configure if the Transformer blocks' attention should contain a bias parameter. |
|
sample_size (int, defaults to 128): |
|
The width of the latent images. This parameter is fixed during training. |
|
patch_size (int, defaults to 2): |
|
Size of the patches the model processes, relevant for architectures working on non-sequential data. |
|
activation_fn (str, optional, defaults to "gelu-approximate"): |
|
Activation function to use in feed-forward networks within Transformer blocks. |
|
num_embeds_ada_norm (int, optional, defaults to 1000): |
|
Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during |
|
inference. |
|
upcast_attention (bool, optional, defaults to False): |
|
If true, upcasts the attention mechanism dimensions for potentially improved performance. |
|
norm_type (str, optional, defaults to "ada_norm_zero"): |
|
Specifies the type of normalization used, can be 'ada_norm_zero'. |
|
norm_elementwise_affine (bool, optional, defaults to False): |
|
If true, enables element-wise affine parameters in the normalization layers. |
|
norm_eps (float, optional, defaults to 1e-6): |
|
A small constant added to the denominator in normalization layers to prevent division by zero. |
|
interpolation_scale (int, optional): Scale factor to use during interpolating the position embeddings. |
|
use_additional_conditions (bool, optional): If we're using additional conditions as inputs. |
|
attention_type (str, optional, defaults to "default"): Kind of attention mechanism to be used. |
|
caption_channels (int, optional, defaults to None): |
|
Number of channels to use for projecting the caption embeddings. |
|
use_linear_projection (bool, optional, defaults to False): |
|
Deprecated argument. Will be removed in a future version. |
|
num_vector_embeds (bool, optional, defaults to False): |
|
Deprecated argument. Will be removed in a future version. |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
_no_split_modules = ["BasicTransformerBlock", "PatchEmbed"] |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_attention_heads: int = 16, |
|
attention_head_dim: int = 72, |
|
in_channels: int = 4, |
|
out_channels: Optional[int] = 8, |
|
num_layers: int = 28, |
|
dropout: float = 0.0, |
|
norm_num_groups: int = 32, |
|
cross_attention_dim: Optional[int] = 1152, |
|
attention_bias: bool = True, |
|
sample_size: int = 128, |
|
patch_size: int = 2, |
|
activation_fn: str = "gelu-approximate", |
|
num_embeds_ada_norm: Optional[int] = 1000, |
|
upcast_attention: bool = False, |
|
norm_type: str = "ada_norm_single", |
|
norm_elementwise_affine: bool = False, |
|
norm_eps: float = 1e-6, |
|
interpolation_scale: Optional[int] = None, |
|
use_additional_conditions: Optional[bool] = None, |
|
caption_channels: Optional[int] = None, |
|
attention_type: Optional[str] = "default", |
|
): |
|
super().__init__() |
|
|
|
|
|
if norm_type != "ada_norm_single": |
|
raise NotImplementedError( |
|
f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'." |
|
) |
|
elif norm_type == "ada_norm_single" and num_embeds_ada_norm is None: |
|
raise ValueError( |
|
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None." |
|
) |
|
|
|
|
|
self.attention_head_dim = attention_head_dim |
|
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim |
|
self.out_channels = in_channels if out_channels is None else out_channels |
|
if use_additional_conditions is None: |
|
if sample_size == 128: |
|
use_additional_conditions = True |
|
else: |
|
use_additional_conditions = False |
|
self.use_additional_conditions = use_additional_conditions |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.height = self.config.sample_size |
|
self.width = self.config.sample_size |
|
|
|
interpolation_scale = ( |
|
self.config.interpolation_scale |
|
if self.config.interpolation_scale is not None |
|
else max(self.config.sample_size // 64, 1) |
|
) |
|
self.pos_embed = PatchEmbed( |
|
height=self.config.sample_size, |
|
width=self.config.sample_size, |
|
patch_size=self.config.patch_size, |
|
in_channels=self.config.in_channels, |
|
embed_dim=self.inner_dim, |
|
interpolation_scale=interpolation_scale, |
|
) |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
self.inner_dim, |
|
self.config.num_attention_heads, |
|
self.config.attention_head_dim, |
|
dropout=self.config.dropout, |
|
cross_attention_dim=self.config.cross_attention_dim, |
|
activation_fn=self.config.activation_fn, |
|
num_embeds_ada_norm=self.config.num_embeds_ada_norm, |
|
attention_bias=self.config.attention_bias, |
|
upcast_attention=self.config.upcast_attention, |
|
norm_type=norm_type, |
|
norm_elementwise_affine=self.config.norm_elementwise_affine, |
|
norm_eps=self.config.norm_eps, |
|
attention_type=self.config.attention_type, |
|
) |
|
for _ in range(self.config.num_layers) |
|
] |
|
) |
|
|
|
|
|
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6) |
|
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5) |
|
self.proj_out = nn.Linear(self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels) |
|
|
|
self.adaln_single = AdaLayerNormSingle( |
|
self.inner_dim, use_additional_conditions=self.use_additional_conditions |
|
) |
|
self.caption_projection = None |
|
if self.config.caption_channels is not None: |
|
self.caption_projection = PixArtAlphaTextProjection( |
|
in_features=self.config.caption_channels, hidden_size=self.inner_dim |
|
) |
|
self.ip_adapter = IPAdapter() |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if hasattr(module, "gradient_checkpointing"): |
|
module.gradient_checkpointing = value |
|
|
|
@property |
|
|
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): |
|
if hasattr(module, "get_processor"): |
|
processors[f"{name}.processor"] = module.get_processor() |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
|
|
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): |
|
r""" |
|
Sets the attention processor to use to compute attention. |
|
|
|
Parameters: |
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
for **all** `Attention` layers. |
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention |
|
processor. This is strongly recommended when setting trainable attention processors. |
|
|
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor) |
|
else: |
|
module.set_processor(processor.pop(f"{name}.processor")) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
def set_default_attn_processor(self): |
|
""" |
|
Disables custom attention processors and sets the default attention implementation. |
|
|
|
Safe to just use `AttnProcessor()` as PixArt doesn't have any exotic attention processors in default model. |
|
""" |
|
self.set_attn_processor(AttnProcessor()) |
|
|
|
|
|
def fuse_qkv_projections(self): |
|
""" |
|
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) |
|
are fused. For cross-attention modules, key and value projection matrices are fused. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is 🧪 experimental. |
|
|
|
</Tip> |
|
""" |
|
self.original_attn_processors = None |
|
|
|
for _, attn_processor in self.attn_processors.items(): |
|
if "Added" in str(attn_processor.__class__.__name__): |
|
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") |
|
|
|
self.original_attn_processors = self.attn_processors |
|
|
|
for module in self.modules(): |
|
if isinstance(module, Attention): |
|
module.fuse_projections(fuse=True) |
|
|
|
self.set_attn_processor(FusedAttnProcessor2_0()) |
|
|
|
|
|
def unfuse_qkv_projections(self): |
|
"""Disables the fused QKV projection if enabled. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is 🧪 experimental. |
|
|
|
</Tip> |
|
|
|
""" |
|
if self.original_attn_processors is not None: |
|
self.set_attn_processor(self.original_attn_processors) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: torch.Tensor, |
|
encoder_attention_mask: torch.Tensor, |
|
ip_hidden_states: torch.Tensor = None, |
|
ip_attention_mask: torch.Tensor = None, |
|
text_bboxes = None, |
|
character_bboxes = None, |
|
reference_embeddings = None, |
|
cfg_on_10_percent = False, |
|
timestep: Optional[torch.LongTensor] = None, |
|
added_cond_kwargs: Dict[str, torch.Tensor] = None, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
return_dict: bool = True, |
|
): |
|
""" |
|
The [`PixArtTransformer2DModel`] forward method. |
|
|
|
Args: |
|
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): |
|
Input `hidden_states`. |
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): |
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to |
|
self-attention. |
|
timestep (`torch.LongTensor`, *optional*): |
|
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. |
|
added_cond_kwargs: (`Dict[str, Any]`, *optional*): Additional conditions to be used as inputs. |
|
cross_attention_kwargs ( `Dict[str, Any]`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
encoder_attention_mask ( `torch.Tensor`, *optional*): |
|
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: |
|
|
|
* Mask `(batch, sequence_length)` True = keep, False = discard. |
|
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. |
|
|
|
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format |
|
above. This bias will be added to the cross-attention scores. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain |
|
tuple. |
|
|
|
Returns: |
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a |
|
`tuple` where the first element is the sample tensor. |
|
""" |
|
if self.use_additional_conditions and added_cond_kwargs is None: |
|
raise ValueError("`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`.") |
|
|
|
assert (ip_hidden_states is None) ^ (text_bboxes is None and character_bboxes is None and reference_embeddings is None) |
|
if ip_hidden_states is None: |
|
ip_hidden_states, ip_attention_mask = self.ip_adapter(text_bboxes, character_bboxes, reference_embeddings, cfg_on_10_percent) |
|
|
|
|
|
batch_size = len(hidden_states) |
|
heights = [h.shape[-2] // self.config.patch_size for h in hidden_states] |
|
widths = [w.shape[-1] // self.config.patch_size for w in hidden_states] |
|
hidden_states = [self.pos_embed(hs[None])[0] for hs in hidden_states] |
|
attention_mask = [torch.ones(x.shape[0]) for x in hidden_states] |
|
hidden_states = pad_sequence(hidden_states, batch_first=True) |
|
attention_mask = pad_sequence(attention_mask, batch_first=True, padding_value=0).bool().to(hidden_states.device) |
|
original_attention_mask = attention_mask |
|
|
|
timestep, embedded_timestep = self.adaln_single( |
|
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.ndim == 2: |
|
|
|
|
|
|
|
|
|
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 |
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
|
|
|
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: |
|
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 |
|
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) |
|
|
|
if self.caption_projection is not None: |
|
encoder_hidden_states = self.caption_projection(encoder_hidden_states) |
|
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) |
|
|
|
|
|
for block in self.transformer_blocks: |
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
attention_mask, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
ip_hidden_states, |
|
ip_attention_mask, |
|
timestep, |
|
cross_attention_kwargs, |
|
None, |
|
**ckpt_kwargs, |
|
) |
|
else: |
|
hidden_states = block( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
ip_hidden_states=ip_hidden_states, |
|
ip_attention_mask=ip_attention_mask, |
|
timestep=timestep, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
class_labels=None, |
|
) |
|
|
|
|
|
shift, scale = ( |
|
self.scale_shift_table[None] + embedded_timestep[:, None].to(self.scale_shift_table.device) |
|
).chunk(2, dim=1) |
|
hidden_states = self.norm_out(hidden_states) |
|
|
|
hidden_states = hidden_states * (1 + scale.to(hidden_states.device)) + shift.to(hidden_states.device) |
|
hidden_states = self.proj_out(hidden_states) |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
|
|
outputs = [] |
|
for idx, (height, width) in enumerate(zip(heights, widths)): |
|
_hidden_state = hidden_states[idx][original_attention_mask[idx]].reshape( |
|
shape=(height, width, self.config.patch_size, self.config.patch_size, self.out_channels) |
|
) |
|
_hidden_state = torch.einsum("hwpqc->chpwq", _hidden_state) |
|
outputs.append(_hidden_state.reshape( |
|
shape=(self.out_channels, height * self.config.patch_size, width * self.config.patch_size) |
|
)) |
|
|
|
if len(set([x.shape for x in outputs])) == 1: |
|
outputs = torch.stack(outputs) |
|
|
|
if not return_dict: |
|
return (outputs,) |
|
|
|
return Transformer2DModelOutput(sample=outputs) |
|
|
|
|
|
class RBFEmbedding(nn.Module): |
|
def __init__(self, output_dim, num_kernels=32): |
|
super().__init__() |
|
self.means = nn.Parameter(torch.linspace(0, 1, num_kernels)) |
|
self.scales = nn.Parameter(torch.ones(num_kernels) * 20) |
|
self.proj = nn.Linear(num_kernels * 4, output_dim) |
|
|
|
def forward(self, box): |
|
box = torch.tensor(box, dtype=self.means.dtype, device=self.means.device) |
|
x = box.unsqueeze(-1) - self.means |
|
x = torch.exp(-0.5 * (x * self.scales.unsqueeze(0)) ** 2) |
|
x = x.reshape(-1) |
|
return self.proj(x) |
|
|
|
def participate_in_grad(self): |
|
return self.proj.weight.sum() + self.proj.bias.sum() + self.means.sum() + self.scales.sum() |
|
|
|
class RoPEPositionalEmbedding(nn.Module): |
|
def __init__(self, embedding_dim, base=10000): |
|
super().__init__() |
|
self.embedding_dim = embedding_dim |
|
assert embedding_dim % 2 == 0, "Embedding dimension must be even" |
|
half_dim = embedding_dim // 2 |
|
freqs = 1.0 / (base ** (torch.arange(0, half_dim).float() / half_dim)) |
|
self.register_buffer("freqs", freqs) |
|
|
|
def forward(self, x, positions): |
|
orig_dtype = x.dtype |
|
x = x.float() |
|
positions = positions.float() |
|
x_2d = rearrange(x, '... (d two) -> ... d two', two=2) |
|
positions = positions.unsqueeze(-1) * self.freqs.float() |
|
sin = positions.sin().unsqueeze(-1) |
|
cos = positions.cos().unsqueeze(-1) |
|
x_out = torch.cat([ |
|
x_2d[..., 0:1] * cos - x_2d[..., 1:2] * sin, |
|
x_2d[..., 0:1] * sin + x_2d[..., 1:2] * cos, |
|
], dim=-1) |
|
output = rearrange(x_out, '... d two -> ... (d two)') |
|
return output.to(orig_dtype) |
|
|
|
class IPAdapter(ModelMixin): |
|
def __init__(self): |
|
super().__init__() |
|
self.embedding_dim = 1152 |
|
self.box_embedding = RBFEmbedding(self.embedding_dim) |
|
self.pos_embedding = RoPEPositionalEmbedding(self.embedding_dim) |
|
self.text_cls_embedding = nn.Embedding(1, self.embedding_dim) |
|
self.character_cls_embedding = nn.Embedding(4, self.embedding_dim) |
|
self.ref_embedding_proj = nn.Linear(768, 4 * self.embedding_dim) |
|
self.void_ip_embed = nn.Embedding(1, self.embedding_dim) |
|
self.negative_ip_embed = nn.Embedding(1, self.embedding_dim) |
|
self.norm = nn.LayerNorm(self.embedding_dim) |
|
|
|
def participate_in_grad(self): |
|
return sum([ |
|
self.box_embedding.participate_in_grad(), |
|
self.text_cls_embedding.weight.sum(), |
|
self.character_cls_embedding.weight.sum(), |
|
self.ref_embedding_proj.weight.sum(), |
|
self.ref_embedding_proj.bias.sum(), |
|
self.void_ip_embed.weight.sum(), |
|
self.negative_ip_embed.weight.sum(), |
|
self.norm.weight.sum(), |
|
self.norm.bias.sum() |
|
]) |
|
|
|
def embed_text(self, box): |
|
box_embedding = self.box_embedding(box) |
|
return torch.stack([ |
|
box_embedding, |
|
*self.text_cls_embedding.weight, |
|
]) |
|
|
|
def embed_character(self, character_bbox, reference_embedding): |
|
box_embedding = self.box_embedding(character_bbox) |
|
if reference_embedding is None: |
|
character_embedding = self.character_cls_embedding.weight |
|
else: |
|
character_embedding = self.ref_embedding_proj(reference_embedding.unsqueeze(0)) |
|
character_embedding = rearrange(character_embedding, "1 (c h) -> h c", h=4) |
|
return torch.stack([ |
|
box_embedding, |
|
*character_embedding |
|
]) |
|
|
|
def apply_position_embedding(self, embeddings): |
|
seq_length = embeddings.shape[0] |
|
positions = torch.arange(seq_length, device=embeddings.device, dtype=embeddings.dtype) |
|
return self.pos_embedding(embeddings, positions) |
|
|
|
def forward(self, batch_text_bboxes, batch_character_bboxes, batch_reference_embeddings, cfg_on_10_percent): |
|
ip_embeddings = [] |
|
for batch_idx, (text_bboxes, character_bboxes, reference_embeddings) in enumerate(zip(batch_text_bboxes, batch_character_bboxes, batch_reference_embeddings)): |
|
text_embeddings = [self.embed_text(box) for box in text_bboxes] |
|
character_embeddings = [self.embed_character(box, reference_embeddings[i]) for i, box in enumerate(character_bboxes)] |
|
if len(text_embeddings) + len(character_embeddings) == 0: |
|
ip_embeddings.append(self.void_ip_embed.weight) |
|
continue |
|
ip_embedding = torch.cat(text_embeddings + character_embeddings, dim=0) |
|
ip_embeddings.append(self.apply_position_embedding(ip_embedding)) |
|
|
|
ip_mask = [torch.ones(x.shape[0], dtype=torch.bool, device=x.device) for x in ip_embeddings] |
|
ip_embeddings = pad_sequence(ip_embeddings, batch_first=True, padding_value=0) |
|
ip_mask = pad_sequence(ip_mask, batch_first=True, padding_value=0).bool() |
|
if cfg_on_10_percent: |
|
last_10_percent = int(len(ip_embeddings) * 0.1) |
|
ip_embeddings[-last_10_percent:] = self.negative_ip_embed.weight |
|
ip_mask[-last_10_percent:] = 0 |
|
ip_mask[-last_10_percent:, :1] = 1 |
|
return self.norm(ip_embeddings), ip_mask |
|
|
|
|
|
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int): |
|
|
|
if hidden_states.shape[chunk_dim] % chunk_size != 0: |
|
raise ValueError( |
|
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." |
|
) |
|
|
|
num_chunks = hidden_states.shape[chunk_dim] // chunk_size |
|
ff_output = torch.cat( |
|
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], |
|
dim=chunk_dim, |
|
) |
|
return ff_output |
|
|
|
|
|
@maybe_allow_in_graph |
|
class GatedSelfAttentionDense(nn.Module): |
|
r""" |
|
A gated self-attention dense layer that combines visual features and object features. |
|
|
|
Parameters: |
|
query_dim (`int`): The number of channels in the query. |
|
context_dim (`int`): The number of channels in the context. |
|
n_heads (`int`): The number of heads to use for attention. |
|
d_head (`int`): The number of channels in each head. |
|
""" |
|
|
|
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int): |
|
super().__init__() |
|
|
|
|
|
self.linear = nn.Linear(context_dim, query_dim) |
|
|
|
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) |
|
self.ff = FeedForward(query_dim, activation_fn="geglu") |
|
|
|
self.norm1 = nn.LayerNorm(query_dim) |
|
self.norm2 = nn.LayerNorm(query_dim) |
|
|
|
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0))) |
|
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0))) |
|
|
|
self.enabled = True |
|
|
|
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor: |
|
if not self.enabled: |
|
return x |
|
|
|
n_visual = x.shape[1] |
|
objs = self.linear(objs) |
|
|
|
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] |
|
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) |
|
|
|
return x |
|
|
|
|
|
@maybe_allow_in_graph |
|
class BasicTransformerBlock(nn.Module): |
|
r""" |
|
A basic Transformer block. |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input and output. |
|
num_attention_heads (`int`): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`): The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
num_embeds_ada_norm (: |
|
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. |
|
attention_bias (: |
|
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. |
|
only_cross_attention (`bool`, *optional*): |
|
Whether to use only cross-attention layers. In this case two cross attention layers are used. |
|
double_self_attention (`bool`, *optional*): |
|
Whether to use two self-attention layers. In this case no cross attention layers are used. |
|
upcast_attention (`bool`, *optional*): |
|
Whether to upcast the attention computation to float32. This is useful for mixed precision training. |
|
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): |
|
Whether to use learnable elementwise affine parameters for normalization. |
|
norm_type (`str`, *optional*, defaults to `"layer_norm"`): |
|
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. |
|
final_dropout (`bool` *optional*, defaults to False): |
|
Whether to apply a final dropout after the last feed-forward layer. |
|
attention_type (`str`, *optional*, defaults to `"default"`): |
|
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. |
|
positional_embeddings (`str`, *optional*, defaults to `None`): |
|
The type of positional embeddings to apply to. |
|
num_positional_embeddings (`int`, *optional*, defaults to `None`): |
|
The maximum number of positional embeddings to apply. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
dropout=0.0, |
|
cross_attention_dim: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
attention_bias: bool = False, |
|
only_cross_attention: bool = False, |
|
double_self_attention: bool = False, |
|
upcast_attention: bool = False, |
|
norm_elementwise_affine: bool = True, |
|
norm_type: str = "layer_norm", |
|
norm_eps: float = 1e-5, |
|
final_dropout: bool = False, |
|
attention_type: str = "default", |
|
positional_embeddings: Optional[str] = None, |
|
num_positional_embeddings: Optional[int] = None, |
|
ada_norm_continous_conditioning_embedding_dim: Optional[int] = None, |
|
ada_norm_bias: Optional[int] = None, |
|
ff_inner_dim: Optional[int] = None, |
|
ff_bias: bool = True, |
|
attention_out_bias: bool = True, |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.num_attention_heads = num_attention_heads |
|
self.attention_head_dim = attention_head_dim |
|
self.dropout = dropout |
|
self.cross_attention_dim = cross_attention_dim |
|
self.activation_fn = activation_fn |
|
self.attention_bias = attention_bias |
|
self.double_self_attention = double_self_attention |
|
self.norm_elementwise_affine = norm_elementwise_affine |
|
self.positional_embeddings = positional_embeddings |
|
self.num_positional_embeddings = num_positional_embeddings |
|
self.only_cross_attention = only_cross_attention |
|
|
|
|
|
|
|
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) |
|
self.attn1 = Attention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
cross_attention_dim=cross_attention_dim if only_cross_attention else None, |
|
upcast_attention=upcast_attention, |
|
out_bias=attention_out_bias, |
|
) |
|
|
|
|
|
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) |
|
self.attn2 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_dim if not double_self_attention else None, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
out_bias=attention_out_bias, |
|
) |
|
|
|
self.ip_attn = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_dim if not double_self_attention else None, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
out_bias=attention_out_bias, |
|
) |
|
self.ip_attn.to_out[0].weight.data.zero_() |
|
self.ip_attn.to_out[0].bias.data.zero_() |
|
|
|
|
|
self.ff = FeedForward( |
|
dim, |
|
dropout=dropout, |
|
activation_fn=activation_fn, |
|
final_dropout=final_dropout, |
|
inner_dim=ff_inner_dim, |
|
bias=ff_bias, |
|
) |
|
|
|
|
|
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) |
|
|
|
|
|
self._chunk_size = None |
|
self._chunk_dim = 0 |
|
|
|
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): |
|
|
|
self._chunk_size = chunk_size |
|
self._chunk_dim = dim |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
ip_hidden_states: Optional[torch.Tensor] = None, |
|
ip_attention_mask: Optional[torch.Tensor] = None, |
|
timestep: Optional[torch.LongTensor] = None, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
class_labels: Optional[torch.LongTensor] = None, |
|
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, |
|
) -> torch.Tensor: |
|
if cross_attention_kwargs is not None: |
|
if cross_attention_kwargs.get("scale", None) is not None: |
|
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") |
|
|
|
|
|
|
|
batch_size = hidden_states.shape[0] |
|
|
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( |
|
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) |
|
).chunk(6, dim=1) |
|
norm_hidden_states = self.norm1(hidden_states) |
|
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa |
|
|
|
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} |
|
|
|
attn_output = self.attn1( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
attn_output = gate_msa * attn_output |
|
|
|
hidden_states = attn_output + hidden_states |
|
if hidden_states.ndim == 4: |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
|
|
attn_output = self.attn2( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
ip_attn_output = self.ip_attn( |
|
hidden_states, |
|
encoder_hidden_states=ip_hidden_states, |
|
attention_mask=ip_attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
hidden_states = attn_output + ip_attn_output + hidden_states |
|
|
|
|
|
norm_hidden_states = self.norm2(hidden_states) |
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp |
|
|
|
if self._chunk_size is not None: |
|
|
|
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) |
|
else: |
|
ff_output = self.ff(norm_hidden_states) |
|
|
|
ff_output = gate_mlp * ff_output |
|
|
|
hidden_states = ff_output + hidden_states |
|
if hidden_states.ndim == 4: |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
return hidden_states |
|
|
|
class FeedForward(nn.Module): |
|
r""" |
|
A feed-forward layer. |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input. |
|
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. |
|
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. |
|
bias (`bool`, defaults to True): Whether to use a bias in the linear layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
dim_out: Optional[int] = None, |
|
mult: int = 4, |
|
dropout: float = 0.0, |
|
activation_fn: str = "geglu", |
|
final_dropout: bool = False, |
|
inner_dim=None, |
|
bias: bool = True, |
|
): |
|
super().__init__() |
|
if inner_dim is None: |
|
inner_dim = int(dim * mult) |
|
dim_out = dim_out if dim_out is not None else dim |
|
|
|
if activation_fn == "gelu": |
|
act_fn = GELU(dim, inner_dim, bias=bias) |
|
if activation_fn == "gelu-approximate": |
|
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) |
|
elif activation_fn == "geglu": |
|
act_fn = GEGLU(dim, inner_dim, bias=bias) |
|
elif activation_fn == "geglu-approximate": |
|
act_fn = ApproximateGELU(dim, inner_dim, bias=bias) |
|
elif activation_fn == "swiglu": |
|
act_fn = SwiGLU(dim, inner_dim, bias=bias) |
|
elif activation_fn == "linear-silu": |
|
act_fn = LinearActivation(dim, inner_dim, bias=bias, activation="silu") |
|
|
|
self.net = nn.ModuleList([]) |
|
|
|
self.net.append(act_fn) |
|
|
|
self.net.append(nn.Dropout(dropout)) |
|
|
|
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias)) |
|
|
|
if final_dropout: |
|
self.net.append(nn.Dropout(dropout)) |
|
|
|
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: |
|
if len(args) > 0 or kwargs.get("scale", None) is not None: |
|
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." |
|
deprecate("scale", "1.0.0", deprecation_message) |
|
for module in self.net: |
|
hidden_states = module(hidden_states) |
|
return hidden_states |