File size: 42,839 Bytes
a5418f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional, Union, Tuple, List

import torch
from torch import nn
import torch.nn.functional as F

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import is_torch_version, logging, deprecate
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.attention_processor import Attention, AttentionProcessor, AttnProcessor, FusedAttnProcessor2_0, JointAttnProcessor2_0
from diffusers.models.embeddings import PatchEmbed, PixArtAlphaTextProjection
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm, SD35AdaLayerNormZeroX, AdaLayerNormSingle
from torch.nn.utils.rnn import pad_sequence
from einops import rearrange
import numpy as np
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU, FP32SiLU, LinearActivation, SwiGLU
from diffusers.models.embeddings import SinusoidalPositionalEmbedding


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class PixArtTransformer2DModel(ModelMixin, ConfigMixin):
    r"""
    A 2D Transformer model as introduced in PixArt family of models (https://arxiv.org/abs/2310.00426,
    https://arxiv.org/abs/2403.04692).

    Parameters:
        num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (int, optional, defaults to 72): The number of channels in each head.
        in_channels (int, defaults to 4): The number of channels in the input.
        out_channels (int, optional):
            The number of channels in the output. Specify this parameter if the output channel number differs from the
            input.
        num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use.
        dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks.
        norm_num_groups (int, optional, defaults to 32):
            Number of groups for group normalization within Transformer blocks.
        cross_attention_dim (int, optional):
            The dimensionality for cross-attention layers, typically matching the encoder's hidden dimension.
        attention_bias (bool, optional, defaults to True):
            Configure if the Transformer blocks' attention should contain a bias parameter.
        sample_size (int, defaults to 128):
            The width of the latent images. This parameter is fixed during training.
        patch_size (int, defaults to 2):
            Size of the patches the model processes, relevant for architectures working on non-sequential data.
        activation_fn (str, optional, defaults to "gelu-approximate"):
            Activation function to use in feed-forward networks within Transformer blocks.
        num_embeds_ada_norm (int, optional, defaults to 1000):
            Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during
            inference.
        upcast_attention (bool, optional, defaults to False):
            If true, upcasts the attention mechanism dimensions for potentially improved performance.
        norm_type (str, optional, defaults to "ada_norm_zero"):
            Specifies the type of normalization used, can be 'ada_norm_zero'.
        norm_elementwise_affine (bool, optional, defaults to False):
            If true, enables element-wise affine parameters in the normalization layers.
        norm_eps (float, optional, defaults to 1e-6):
            A small constant added to the denominator in normalization layers to prevent division by zero.
        interpolation_scale (int, optional): Scale factor to use during interpolating the position embeddings.
        use_additional_conditions (bool, optional): If we're using additional conditions as inputs.
        attention_type (str, optional, defaults to "default"): Kind of attention mechanism to be used.
        caption_channels (int, optional, defaults to None):
            Number of channels to use for projecting the caption embeddings.
        use_linear_projection (bool, optional, defaults to False):
            Deprecated argument. Will be removed in a future version.
        num_vector_embeds (bool, optional, defaults to False):
            Deprecated argument. Will be removed in a future version.
    """

    _supports_gradient_checkpointing = True
    _no_split_modules = ["BasicTransformerBlock", "PatchEmbed"]

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 72,
        in_channels: int = 4,
        out_channels: Optional[int] = 8,
        num_layers: int = 28,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = 1152,
        attention_bias: bool = True,
        sample_size: int = 128,
        patch_size: int = 2,
        activation_fn: str = "gelu-approximate",
        num_embeds_ada_norm: Optional[int] = 1000,
        upcast_attention: bool = False,
        norm_type: str = "ada_norm_single",
        norm_elementwise_affine: bool = False,
        norm_eps: float = 1e-6,
        interpolation_scale: Optional[int] = None,
        use_additional_conditions: Optional[bool] = None,
        caption_channels: Optional[int] = None,
        attention_type: Optional[str] = "default",
    ):
        super().__init__()

        # Validate inputs.
        if norm_type != "ada_norm_single":
            raise NotImplementedError(
                f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
            )
        elif norm_type == "ada_norm_single" and num_embeds_ada_norm is None:
            raise ValueError(
                f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
            )

        # Set some common variables used across the board.
        self.attention_head_dim = attention_head_dim
        self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
        self.out_channels = in_channels if out_channels is None else out_channels
        if use_additional_conditions is None:
            if sample_size == 128:
                use_additional_conditions = True
            else:
                use_additional_conditions = False
        self.use_additional_conditions = use_additional_conditions

        self.gradient_checkpointing = False

        # 2. Initialize the position embedding and transformer blocks.
        self.height = self.config.sample_size
        self.width = self.config.sample_size

        interpolation_scale = (
            self.config.interpolation_scale
            if self.config.interpolation_scale is not None
            else max(self.config.sample_size // 64, 1)
        )
        self.pos_embed = PatchEmbed(
            height=self.config.sample_size,
            width=self.config.sample_size,
            patch_size=self.config.patch_size,
            in_channels=self.config.in_channels,
            embed_dim=self.inner_dim,
            interpolation_scale=interpolation_scale,
        )

        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    self.inner_dim,
                    self.config.num_attention_heads,
                    self.config.attention_head_dim,
                    dropout=self.config.dropout,
                    cross_attention_dim=self.config.cross_attention_dim,
                    activation_fn=self.config.activation_fn,
                    num_embeds_ada_norm=self.config.num_embeds_ada_norm,
                    attention_bias=self.config.attention_bias,
                    upcast_attention=self.config.upcast_attention,
                    norm_type=norm_type,
                    norm_elementwise_affine=self.config.norm_elementwise_affine,
                    norm_eps=self.config.norm_eps,
                    attention_type=self.config.attention_type,
                )
                for _ in range(self.config.num_layers)
            ]
        )

        # 3. Output blocks.
        self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
        self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
        self.proj_out = nn.Linear(self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels)

        self.adaln_single = AdaLayerNormSingle(
            self.inner_dim, use_additional_conditions=self.use_additional_conditions
        )
        self.caption_projection = None
        if self.config.caption_channels is not None:
            self.caption_projection = PixArtAlphaTextProjection(
                in_features=self.config.caption_channels, hidden_size=self.inner_dim
            )
        self.ip_adapter = IPAdapter()

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    @property
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor()

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.

        Safe to just use `AttnProcessor()` as PixArt doesn't have any exotic attention processors in default model.
        """
        self.set_attn_processor(AttnProcessor())

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
    def fuse_qkv_projections(self):
        """
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>
        """
        self.original_attn_processors = None

        for _, attn_processor in self.attn_processors.items():
            if "Added" in str(attn_processor.__class__.__name__):
                raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")

        self.original_attn_processors = self.attn_processors

        for module in self.modules():
            if isinstance(module, Attention):
                module.fuse_projections(fuse=True)

        self.set_attn_processor(FusedAttnProcessor2_0())

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
    def unfuse_qkv_projections(self):
        """Disables the fused QKV projection if enabled.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        """
        if self.original_attn_processors is not None:
            self.set_attn_processor(self.original_attn_processors)

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        encoder_attention_mask: torch.Tensor,
        ip_hidden_states: torch.Tensor = None,
        ip_attention_mask: torch.Tensor = None,
        text_bboxes = None,
        character_bboxes = None,
        reference_embeddings = None,
        cfg_on_10_percent = False,
        timestep: Optional[torch.LongTensor] = None,
        added_cond_kwargs: Dict[str, torch.Tensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        return_dict: bool = True,
    ):
        """
        The [`PixArtTransformer2DModel`] forward method.

        Args:
            hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
                Input `hidden_states`.
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            timestep (`torch.LongTensor`, *optional*):
                Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
            added_cond_kwargs: (`Dict[str, Any]`, *optional*): Additional conditions to be used as inputs.
            cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            encoder_attention_mask ( `torch.Tensor`, *optional*):
                Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:

                    * Mask `(batch, sequence_length)` True = keep, False = discard.
                    * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.

                If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
                above. This bias will be added to the cross-attention scores.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
                tuple.

        Returns:
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
        """
        if self.use_additional_conditions and added_cond_kwargs is None:
            raise ValueError("`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`.")
        # 0. Prompt Embedding Modification
        assert (ip_hidden_states is None) ^ (text_bboxes is None and character_bboxes is None and reference_embeddings is None)
        if ip_hidden_states is None:
            ip_hidden_states, ip_attention_mask = self.ip_adapter(text_bboxes, character_bboxes, reference_embeddings, cfg_on_10_percent)
        
        # 1. Input
        batch_size = len(hidden_states)
        heights = [h.shape[-2] // self.config.patch_size for h in hidden_states]
        widths = [w.shape[-1] // self.config.patch_size for w in hidden_states]
        hidden_states = [self.pos_embed(hs[None])[0] for hs in hidden_states]
        attention_mask = [torch.ones(x.shape[0]) for x in hidden_states]
        hidden_states = pad_sequence(hidden_states, batch_first=True)
        attention_mask = pad_sequence(attention_mask, batch_first=True, padding_value=0).bool().to(hidden_states.device)
        original_attention_mask = attention_mask

        timestep, embedded_timestep = self.adaln_single(
            timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
        )
        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
        #   we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
        #   we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
        if attention_mask is not None and attention_mask.ndim == 2:
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
            attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
            encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        if self.caption_projection is not None:
            encoder_hidden_states = self.caption_projection(encoder_hidden_states)
            encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])

        # 2. Blocks
        for block in self.transformer_blocks:
            if torch.is_grad_enabled() and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    attention_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    ip_hidden_states,
                    ip_attention_mask,
                    timestep,
                    cross_attention_kwargs,
                    None,
                    **ckpt_kwargs,
                )
            else:
                hidden_states = block(
                    hidden_states,
                    attention_mask=attention_mask,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                    ip_hidden_states=ip_hidden_states,
                    ip_attention_mask=ip_attention_mask,
                    timestep=timestep,
                    cross_attention_kwargs=cross_attention_kwargs,
                    class_labels=None,
                )

        # 3. Output
        shift, scale = (
            self.scale_shift_table[None] + embedded_timestep[:, None].to(self.scale_shift_table.device)
        ).chunk(2, dim=1)
        hidden_states = self.norm_out(hidden_states)
        # Modulation
        hidden_states = hidden_states * (1 + scale.to(hidden_states.device)) + shift.to(hidden_states.device)
        hidden_states = self.proj_out(hidden_states)
        hidden_states = hidden_states.squeeze(1)

        # unpatchify
        outputs = []
        for idx, (height, width) in enumerate(zip(heights, widths)):
            _hidden_state = hidden_states[idx][original_attention_mask[idx]].reshape(
                shape=(height, width, self.config.patch_size, self.config.patch_size, self.out_channels)
            )
            _hidden_state = torch.einsum("hwpqc->chpwq", _hidden_state)
            outputs.append(_hidden_state.reshape(
                shape=(self.out_channels, height * self.config.patch_size, width * self.config.patch_size)
            ))
        
        if len(set([x.shape for x in outputs])) == 1:
            outputs = torch.stack(outputs)

        if not return_dict:
            return (outputs,)

        return Transformer2DModelOutput(sample=outputs)


class RBFEmbedding(nn.Module):
    def __init__(self, output_dim, num_kernels=32):
        super().__init__()
        self.means = nn.Parameter(torch.linspace(0, 1, num_kernels))
        self.scales = nn.Parameter(torch.ones(num_kernels) * 20)
        self.proj = nn.Linear(num_kernels * 4, output_dim)
    
    def forward(self, box):
        box = torch.tensor(box, dtype=self.means.dtype, device=self.means.device)
        x = box.unsqueeze(-1) - self.means
        x = torch.exp(-0.5 * (x * self.scales.unsqueeze(0)) ** 2)
        x = x.reshape(-1)
        return self.proj(x)
    
    def participate_in_grad(self):
        return self.proj.weight.sum() + self.proj.bias.sum() + self.means.sum() + self.scales.sum()

class RoPEPositionalEmbedding(nn.Module):
    def __init__(self, embedding_dim, base=10000):
        super().__init__()
        self.embedding_dim = embedding_dim
        assert embedding_dim % 2 == 0, "Embedding dimension must be even"
        half_dim = embedding_dim // 2
        freqs = 1.0 / (base ** (torch.arange(0, half_dim).float() / half_dim))
        self.register_buffer("freqs", freqs)
    
    def forward(self, x, positions):
        orig_dtype = x.dtype
        x = x.float()
        positions = positions.float()
        x_2d = rearrange(x, '... (d two) -> ... d two', two=2)  # [..., dim/2, 2]
        positions = positions.unsqueeze(-1) * self.freqs.float()  # [seq_len, dim/2]
        sin = positions.sin().unsqueeze(-1)  # [seq_len, dim/2, 1]
        cos = positions.cos().unsqueeze(-1)  # [seq_len, dim/2, 1]
        x_out = torch.cat([
            x_2d[..., 0:1] * cos - x_2d[..., 1:2] * sin,
            x_2d[..., 0:1] * sin + x_2d[..., 1:2] * cos,
        ], dim=-1)
        output = rearrange(x_out, '... d two -> ... (d two)')
        return output.to(orig_dtype)

class IPAdapter(ModelMixin):
    def __init__(self):
        super().__init__()
        self.embedding_dim = 1152
        self.box_embedding = RBFEmbedding(self.embedding_dim)
        self.pos_embedding = RoPEPositionalEmbedding(self.embedding_dim)
        self.text_cls_embedding = nn.Embedding(1, self.embedding_dim)
        self.character_cls_embedding = nn.Embedding(4, self.embedding_dim)
        self.ref_embedding_proj = nn.Linear(768, 4 * self.embedding_dim)
        self.void_ip_embed = nn.Embedding(1, self.embedding_dim)
        self.negative_ip_embed = nn.Embedding(1, self.embedding_dim)
        self.norm = nn.LayerNorm(self.embedding_dim)

    def participate_in_grad(self):
        return sum([
            self.box_embedding.participate_in_grad(),
            self.text_cls_embedding.weight.sum(),
            self.character_cls_embedding.weight.sum(),
            self.ref_embedding_proj.weight.sum(),
            self.ref_embedding_proj.bias.sum(),
            self.void_ip_embed.weight.sum(),
            self.negative_ip_embed.weight.sum(),
            self.norm.weight.sum(),
            self.norm.bias.sum()
        ])

    def embed_text(self, box):
        box_embedding = self.box_embedding(box)
        return torch.stack([
            box_embedding,
            *self.text_cls_embedding.weight,
        ])
    
    def embed_character(self, character_bbox, reference_embedding):
        box_embedding = self.box_embedding(character_bbox)
        if reference_embedding is None:
            character_embedding = self.character_cls_embedding.weight
        else:
            character_embedding = self.ref_embedding_proj(reference_embedding.unsqueeze(0))
            character_embedding = rearrange(character_embedding, "1 (c h) -> h c", h=4)
        return torch.stack([
            box_embedding,
            *character_embedding
        ])
    
    def apply_position_embedding(self, embeddings):
        seq_length = embeddings.shape[0]
        positions = torch.arange(seq_length, device=embeddings.device, dtype=embeddings.dtype)
        return self.pos_embedding(embeddings, positions)

    def forward(self, batch_text_bboxes, batch_character_bboxes, batch_reference_embeddings, cfg_on_10_percent):
        ip_embeddings = []
        for batch_idx, (text_bboxes, character_bboxes, reference_embeddings) in enumerate(zip(batch_text_bboxes, batch_character_bboxes, batch_reference_embeddings)):
            text_embeddings = [self.embed_text(box) for box in text_bboxes]
            character_embeddings = [self.embed_character(box, reference_embeddings[i]) for i, box in enumerate(character_bboxes)]
            if len(text_embeddings) + len(character_embeddings) == 0:
                ip_embeddings.append(self.void_ip_embed.weight)
                continue
            ip_embedding = torch.cat(text_embeddings + character_embeddings, dim=0)
            ip_embeddings.append(self.apply_position_embedding(ip_embedding))

        ip_mask = [torch.ones(x.shape[0], dtype=torch.bool, device=x.device) for x in ip_embeddings]
        ip_embeddings = pad_sequence(ip_embeddings, batch_first=True, padding_value=0)
        ip_mask = pad_sequence(ip_mask, batch_first=True, padding_value=0).bool()
        if cfg_on_10_percent:
            last_10_percent = int(len(ip_embeddings) * 0.1)
            ip_embeddings[-last_10_percent:] = self.negative_ip_embed.weight
            ip_mask[-last_10_percent:] = 0
            ip_mask[-last_10_percent:, :1] = 1
        return self.norm(ip_embeddings), ip_mask


def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
    # "feed_forward_chunk_size" can be used to save memory
    if hidden_states.shape[chunk_dim] % chunk_size != 0:
        raise ValueError(
            f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
        )

    num_chunks = hidden_states.shape[chunk_dim] // chunk_size
    ff_output = torch.cat(
        [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
        dim=chunk_dim,
    )
    return ff_output


@maybe_allow_in_graph
class GatedSelfAttentionDense(nn.Module):
    r"""
    A gated self-attention dense layer that combines visual features and object features.

    Parameters:
        query_dim (`int`): The number of channels in the query.
        context_dim (`int`): The number of channels in the context.
        n_heads (`int`): The number of heads to use for attention.
        d_head (`int`): The number of channels in each head.
    """

    def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
        super().__init__()

        # we need a linear projection since we need cat visual feature and obj feature
        self.linear = nn.Linear(context_dim, query_dim)

        self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
        self.ff = FeedForward(query_dim, activation_fn="geglu")

        self.norm1 = nn.LayerNorm(query_dim)
        self.norm2 = nn.LayerNorm(query_dim)

        self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
        self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))

        self.enabled = True

    def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
        if not self.enabled:
            return x

        n_visual = x.shape[1]
        objs = self.linear(objs)

        x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
        x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))

        return x


@maybe_allow_in_graph
class BasicTransformerBlock(nn.Module):
    r"""
    A basic Transformer block.

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
        only_cross_attention (`bool`, *optional*):
            Whether to use only cross-attention layers. In this case two cross attention layers are used.
        double_self_attention (`bool`, *optional*):
            Whether to use two self-attention layers. In this case no cross attention layers are used.
        upcast_attention (`bool`, *optional*):
            Whether to upcast the attention computation to float32. This is useful for mixed precision training.
        norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
            Whether to use learnable elementwise affine parameters for normalization.
        norm_type (`str`, *optional*, defaults to `"layer_norm"`):
            The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
        final_dropout (`bool` *optional*, defaults to False):
            Whether to apply a final dropout after the last feed-forward layer.
        attention_type (`str`, *optional*, defaults to `"default"`):
            The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
        positional_embeddings (`str`, *optional*, defaults to `None`):
            The type of positional embeddings to apply to.
        num_positional_embeddings (`int`, *optional*, defaults to `None`):
            The maximum number of positional embeddings to apply.
    """

    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        dropout=0.0,
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
        only_cross_attention: bool = False,
        double_self_attention: bool = False,
        upcast_attention: bool = False,
        norm_elementwise_affine: bool = True,
        norm_type: str = "layer_norm",  # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
        norm_eps: float = 1e-5,
        final_dropout: bool = False,
        attention_type: str = "default",
        positional_embeddings: Optional[str] = None,
        num_positional_embeddings: Optional[int] = None,
        ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
        ada_norm_bias: Optional[int] = None,
        ff_inner_dim: Optional[int] = None,
        ff_bias: bool = True,
        attention_out_bias: bool = True,
    ):
        super().__init__()
        self.dim = dim
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        self.dropout = dropout
        self.cross_attention_dim = cross_attention_dim
        self.activation_fn = activation_fn
        self.attention_bias = attention_bias
        self.double_self_attention = double_self_attention
        self.norm_elementwise_affine = norm_elementwise_affine
        self.positional_embeddings = positional_embeddings
        self.num_positional_embeddings = num_positional_embeddings
        self.only_cross_attention = only_cross_attention

        # Define 3 blocks. Each block has its own normalization layer.
        # 1. Self-Attn
        self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
        self.attn1 = Attention(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
            upcast_attention=upcast_attention,
            out_bias=attention_out_bias,
        )

        # 2. Cross-Attn
        self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
        self.attn2 = Attention(
            query_dim=dim,
            cross_attention_dim=cross_attention_dim if not double_self_attention else None,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            upcast_attention=upcast_attention,
            out_bias=attention_out_bias,
        )

        self.ip_attn = Attention(
            query_dim=dim,
            cross_attention_dim=cross_attention_dim if not double_self_attention else None,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            upcast_attention=upcast_attention,
            out_bias=attention_out_bias,
        )
        self.ip_attn.to_out[0].weight.data.zero_()
        self.ip_attn.to_out[0].bias.data.zero_()

        # 3. Feed-forward
        self.ff = FeedForward(
            dim,
            dropout=dropout,
            activation_fn=activation_fn,
            final_dropout=final_dropout,
            inner_dim=ff_inner_dim,
            bias=ff_bias,
        )

        # 5. Scale-shift for PixArt-Alpha.
        self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        self._chunk_dim = dim

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        ip_hidden_states: Optional[torch.Tensor] = None,
        ip_attention_mask: Optional[torch.Tensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        class_labels: Optional[torch.LongTensor] = None,
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
    ) -> torch.Tensor:
        if cross_attention_kwargs is not None:
            if cross_attention_kwargs.get("scale", None) is not None:
                logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")

        # Notice that normalization is always applied before the real computation in the following blocks.
        # 0. Self-Attention
        batch_size = hidden_states.shape[0]

        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
            self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
        ).chunk(6, dim=1)
        norm_hidden_states = self.norm1(hidden_states)
        norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa

        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}

        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )

        attn_output = gate_msa * attn_output

        hidden_states = attn_output + hidden_states
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)

        # 3. Cross-Attention
        attn_output = self.attn2(
            hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            attention_mask=encoder_attention_mask,
            **cross_attention_kwargs,
        )
        ip_attn_output = self.ip_attn(
            hidden_states,
            encoder_hidden_states=ip_hidden_states,
            attention_mask=ip_attention_mask,
            **cross_attention_kwargs,
        )
        hidden_states = attn_output + ip_attn_output + hidden_states

        # 4. Feed-forward
        norm_hidden_states = self.norm2(hidden_states)
        norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp

        if self._chunk_size is not None:
            # "feed_forward_chunk_size" can be used to save memory
            ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
        else:
            ff_output = self.ff(norm_hidden_states)

        ff_output = gate_mlp * ff_output

        hidden_states = ff_output + hidden_states
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)

        return hidden_states

class FeedForward(nn.Module):
    r"""
    A feed-forward layer.

    Parameters:
        dim (`int`): The number of channels in the input.
        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
        bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
    """

    def __init__(
        self,
        dim: int,
        dim_out: Optional[int] = None,
        mult: int = 4,
        dropout: float = 0.0,
        activation_fn: str = "geglu",
        final_dropout: bool = False,
        inner_dim=None,
        bias: bool = True,
    ):
        super().__init__()
        if inner_dim is None:
            inner_dim = int(dim * mult)
        dim_out = dim_out if dim_out is not None else dim

        if activation_fn == "gelu":
            act_fn = GELU(dim, inner_dim, bias=bias)
        if activation_fn == "gelu-approximate":
            act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
        elif activation_fn == "geglu":
            act_fn = GEGLU(dim, inner_dim, bias=bias)
        elif activation_fn == "geglu-approximate":
            act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
        elif activation_fn == "swiglu":
            act_fn = SwiGLU(dim, inner_dim, bias=bias)
        elif activation_fn == "linear-silu":
            act_fn = LinearActivation(dim, inner_dim, bias=bias, activation="silu")

        self.net = nn.ModuleList([])
        # project in
        self.net.append(act_fn)
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
        self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
        # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
        if final_dropout:
            self.net.append(nn.Dropout(dropout))

    def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
        if len(args) > 0 or kwargs.get("scale", None) is not None:
            deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
            deprecate("scale", "1.0.0", deprecation_message)
        for module in self.net:
            hidden_states = module(hidden_states)
        return hidden_states