metadata
base_model: meta-llama/Meta-Llama-3-8B
datasets:
- generator
library_name: peft
license: llama3
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Meta-Llama-3-8B_AviationQA-cosine
results: []
Meta-Llama-3-8B_AviationQA-cosine
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 0.6061
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 3
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7872 | 0.0590 | 50 | 0.7652 |
0.7373 | 0.1181 | 100 | 0.7328 |
0.7242 | 0.1771 | 150 | 0.7182 |
0.7143 | 0.2361 | 200 | 0.7107 |
0.73 | 0.2952 | 250 | 0.7046 |
0.7159 | 0.3542 | 300 | 0.6973 |
0.7211 | 0.4132 | 350 | 0.6921 |
0.7096 | 0.4723 | 400 | 0.6873 |
0.6845 | 0.5313 | 450 | 0.6824 |
0.7251 | 0.5903 | 500 | 0.6783 |
0.6685 | 0.6494 | 550 | 0.6720 |
0.697 | 0.7084 | 600 | 0.6667 |
0.7006 | 0.7674 | 650 | 0.6639 |
0.6952 | 0.8264 | 700 | 0.6618 |
0.6649 | 0.8855 | 750 | 0.6596 |
0.6877 | 0.9445 | 800 | 0.6553 |
0.6673 | 1.0035 | 850 | 0.6531 |
0.6611 | 1.0626 | 900 | 0.6487 |
0.6971 | 1.1216 | 950 | 0.6452 |
0.6652 | 1.1806 | 1000 | 0.6423 |
0.645 | 1.2397 | 1050 | 0.6397 |
0.6494 | 1.2987 | 1100 | 0.6388 |
0.6623 | 1.3577 | 1150 | 0.6359 |
0.6552 | 1.4168 | 1200 | 0.6334 |
0.6465 | 1.4758 | 1250 | 0.6297 |
0.6495 | 1.5348 | 1300 | 0.6285 |
0.6521 | 1.5939 | 1350 | 0.6272 |
0.6505 | 1.6529 | 1400 | 0.6261 |
0.6773 | 1.7119 | 1450 | 0.6238 |
0.6487 | 1.7710 | 1500 | 0.6225 |
0.639 | 1.8300 | 1550 | 0.6208 |
0.6465 | 1.8890 | 1600 | 0.6194 |
0.6528 | 1.9481 | 1650 | 0.6182 |
0.6265 | 2.0071 | 1700 | 0.6164 |
0.6161 | 2.0661 | 1750 | 0.6137 |
0.6236 | 2.1251 | 1800 | 0.6118 |
0.6371 | 2.1842 | 1850 | 0.6111 |
0.6294 | 2.2432 | 1900 | 0.6093 |
0.6257 | 2.3022 | 1950 | 0.6087 |
0.6204 | 2.3613 | 2000 | 0.6081 |
0.6133 | 2.4203 | 2050 | 0.6073 |
0.6108 | 2.4793 | 2100 | 0.6068 |
0.622 | 2.5384 | 2150 | 0.6066 |
0.6233 | 2.5974 | 2200 | 0.6064 |
0.6183 | 2.6564 | 2250 | 0.6063 |
0.6237 | 2.7155 | 2300 | 0.6062 |
0.6388 | 2.7745 | 2350 | 0.6062 |
0.6236 | 2.8335 | 2400 | 0.6062 |
0.6236 | 2.8926 | 2450 | 0.6062 |
0.6205 | 2.9516 | 2500 | 0.6061 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1