|
from transformers import PretrainedConfig |
|
|
|
class EEGViTConfig(PretrainedConfig): |
|
model_type = "eegvit" |
|
|
|
def __init__( |
|
self, |
|
conv1_out_channels=256, |
|
conv1_kernel_size=(1, 36), |
|
conv1_stride=(1, 36), |
|
conv1_padding=(0, 2), |
|
num_channels=256, |
|
image_size=(129, 14), |
|
patch_size=(8, 1), |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
intermediate_size=3072, |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
classifier_dropout=0.1, |
|
num_labels=2, |
|
**kwargs |
|
): |
|
super().__init__(**kwargs) |
|
|
|
|
|
self.conv1_out_channels = conv1_out_channels |
|
self.conv1_kernel_size = conv1_kernel_size |
|
self.conv1_stride = conv1_stride |
|
self.conv1_padding = conv1_padding |
|
|
|
|
|
self.num_channels = num_channels |
|
self.image_size = image_size |
|
self.patch_size = patch_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
|
|
|
|
self.classifier_dropout = classifier_dropout |
|
self.num_labels = num_labels |