from transformers import PretrainedConfig class EEGViTConfig(PretrainedConfig): model_type = "eegvit" def __init__( self, conv1_out_channels=256, conv1_kernel_size=(1, 36), conv1_stride=(1, 36), conv1_padding=(0, 2), num_channels=256, image_size=(129, 14), patch_size=(8, 1), hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, initializer_range=0.02, layer_norm_eps=1e-12, classifier_dropout=0.1, num_labels=2, **kwargs ): super().__init__(**kwargs) # Conv1 settings self.conv1_out_channels = conv1_out_channels self.conv1_kernel_size = conv1_kernel_size self.conv1_stride = conv1_stride self.conv1_padding = conv1_padding # ViT specific settings self.num_channels = num_channels self.image_size = image_size self.patch_size = patch_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps # Classifier settings self.classifier_dropout = classifier_dropout self.num_labels = num_labels