wav2vec2-base-finetune-vi-v5

This model is a fine-tuned version of nguyenvulebinh/wav2vec2-large-vi on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2373
  • Wer: 0.1681

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
20.4793 0.99 500 8.0023 1.0
4.5661 1.98 1000 3.4221 1.0
3.356 2.96 1500 3.2739 1.0
2.2533 3.95 2000 0.8992 0.4884
0.8412 4.94 2500 0.5181 0.3061
0.5738 5.93 3000 0.3986 0.2586
0.4608 6.92 3500 0.3545 0.2230
0.399 7.91 4000 0.3220 0.2003
0.341 8.89 4500 0.2936 0.1928
0.3094 9.88 5000 0.2727 0.1873
0.2834 10.87 5500 0.2721 0.1813
0.2761 11.86 6000 0.2704 0.1817
0.2505 12.85 6500 0.2597 0.1766
0.2472 13.83 7000 0.2460 0.1744
0.2335 14.82 7500 0.2486 0.1728
0.2183 15.81 8000 0.2430 0.1714
0.2153 16.8 8500 0.2433 0.1697
0.2029 17.79 9000 0.2408 0.1688
0.2094 18.77 9500 0.2349 0.1694
0.2045 19.76 10000 0.2373 0.1681

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.0
  • Datasets 2.8.0
  • Tokenizers 0.13.3
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.