wav2vec2-base-finetune-vi-v4
This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2829
- Wer: 0.1587
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
5.0547 | 0.49 | 500 | 3.4652 | 1.0 |
2.9133 | 0.99 | 1000 | 1.1003 | 0.5035 |
1.0644 | 1.48 | 1500 | 0.5960 | 0.3199 |
0.8294 | 1.98 | 2000 | 0.5098 | 0.2809 |
0.6965 | 2.47 | 2500 | 0.5010 | 0.2596 |
0.6646 | 2.96 | 3000 | 0.4209 | 0.2398 |
0.5753 | 3.46 | 3500 | 0.4089 | 0.2361 |
0.5265 | 3.95 | 4000 | 0.3868 | 0.2195 |
0.4701 | 4.45 | 4500 | 0.3626 | 0.2171 |
0.4617 | 4.94 | 5000 | 0.3693 | 0.2160 |
0.4343 | 5.43 | 5500 | 0.3661 | 0.2058 |
0.4246 | 5.93 | 6000 | 0.3618 | 0.2067 |
0.3881 | 6.42 | 6500 | 0.3654 | 0.2044 |
0.3948 | 6.92 | 7000 | 0.3586 | 0.2009 |
0.367 | 7.41 | 7500 | 0.3431 | 0.1961 |
0.3449 | 7.91 | 8000 | 0.3196 | 0.1944 |
0.3168 | 8.4 | 8500 | 0.3310 | 0.1912 |
0.3393 | 8.89 | 9000 | 0.3418 | 0.1879 |
0.3197 | 9.39 | 9500 | 0.3434 | 0.1888 |
0.2954 | 9.88 | 10000 | 0.3371 | 0.1863 |
0.2968 | 10.38 | 10500 | 0.2941 | 0.1899 |
0.2802 | 10.87 | 11000 | 0.3095 | 0.1836 |
0.2783 | 11.36 | 11500 | 0.3275 | 0.1822 |
0.3027 | 11.86 | 12000 | 0.3103 | 0.1806 |
0.2645 | 12.35 | 12500 | 0.3247 | 0.1842 |
0.2958 | 12.85 | 13000 | 0.3242 | 0.1801 |
0.2648 | 13.34 | 13500 | 0.3169 | 0.1775 |
0.2461 | 13.83 | 14000 | 0.2926 | 0.1764 |
0.247 | 14.33 | 14500 | 0.3033 | 0.1741 |
0.2212 | 14.82 | 15000 | 0.2901 | 0.1749 |
0.2239 | 15.32 | 15500 | 0.3237 | 0.1758 |
0.2093 | 15.81 | 16000 | 0.2972 | 0.1759 |
0.2284 | 16.3 | 16500 | 0.3025 | 0.1749 |
0.228 | 16.8 | 17000 | 0.2862 | 0.1708 |
0.2033 | 17.29 | 17500 | 0.3039 | 0.1745 |
0.189 | 17.79 | 18000 | 0.3084 | 0.1708 |
0.1992 | 18.28 | 18500 | 0.2931 | 0.1735 |
0.1989 | 18.77 | 19000 | 0.2964 | 0.1693 |
0.1953 | 19.27 | 19500 | 0.3082 | 0.1715 |
0.1813 | 19.76 | 20000 | 0.2859 | 0.1702 |
0.1703 | 20.26 | 20500 | 0.2936 | 0.1680 |
0.1939 | 20.75 | 21000 | 0.2871 | 0.1684 |
0.1769 | 21.25 | 21500 | 0.2994 | 0.1646 |
0.1795 | 21.74 | 22000 | 0.2990 | 0.1669 |
0.17 | 22.23 | 22500 | 0.2839 | 0.1663 |
0.1507 | 22.73 | 23000 | 0.3125 | 0.1666 |
0.1676 | 23.22 | 23500 | 0.2867 | 0.1611 |
0.1675 | 23.72 | 24000 | 0.3099 | 0.1607 |
0.171 | 24.21 | 24500 | 0.3000 | 0.1627 |
0.1483 | 24.7 | 25000 | 0.3010 | 0.1629 |
0.1452 | 25.2 | 25500 | 0.2910 | 0.1641 |
0.1394 | 25.69 | 26000 | 0.2878 | 0.1605 |
0.1478 | 26.19 | 26500 | 0.2881 | 0.1617 |
0.1426 | 26.68 | 27000 | 0.2714 | 0.1607 |
0.1342 | 27.17 | 27500 | 0.2941 | 0.1615 |
0.1385 | 27.67 | 28000 | 0.2758 | 0.1594 |
0.1541 | 28.16 | 28500 | 0.2830 | 0.1592 |
0.153 | 28.66 | 29000 | 0.2789 | 0.1575 |
0.1359 | 29.15 | 29500 | 0.2819 | 0.1588 |
0.1276 | 29.64 | 30000 | 0.2829 | 0.1587 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.8.0
- Tokenizers 0.13.3
- Downloads last month
- 26
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.