wav2vec2-base-finetune-vi-v3

This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2019
  • Wer: 0.1347

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Wer
4.3444 0.59 500 3.0138 0.9938
1.6923 1.19 1000 0.6549 0.3873
0.8371 1.78 1500 0.3958 0.2492
0.6161 2.37 2000 0.3272 0.2161
0.5443 2.97 2500 0.2871 0.1967
0.4361 3.56 3000 0.2928 0.1852
0.3889 4.15 3500 0.2957 0.1745
0.3701 4.74 4000 0.2611 0.1702
0.353 5.34 4500 0.2514 0.1685
0.3299 5.93 5000 0.2239 0.1612
0.3235 6.52 5500 0.2362 0.1673
0.3 7.12 6000 0.2267 0.1593
0.285 7.71 6500 0.2397 0.1570
0.2766 8.3 7000 0.2415 0.1538
0.2652 8.9 7500 0.2265 0.1552
0.2396 9.49 8000 0.2299 0.1516
0.2442 10.08 8500 0.2136 0.1538
0.242 10.68 9000 0.2120 0.1510
0.2149 11.27 9500 0.2250 0.1494
0.2186 11.86 10000 0.2077 0.1491
0.2157 12.46 10500 0.2198 0.1461
0.2154 13.05 11000 0.2048 0.1484
0.2115 13.64 11500 0.2209 0.1444
0.2072 14.23 12000 0.2014 0.1414
0.1974 14.83 12500 0.2256 0.1451
0.1888 15.42 13000 0.1931 0.1445
0.1802 16.01 13500 0.2089 0.1452
0.1747 16.61 14000 0.2136 0.1441
0.1585 17.2 14500 0.2102 0.1411
0.1593 17.79 15000 0.1941 0.1413
0.1662 18.39 15500 0.2046 0.1426
0.165 18.98 16000 0.2077 0.1432
0.1696 19.57 16500 0.2062 0.1406
0.1499 20.17 17000 0.1997 0.1406
0.1459 20.76 17500 0.2063 0.1418
0.1381 21.35 18000 0.2040 0.1374
0.1504 21.95 18500 0.2013 0.1387
0.14 22.54 19000 0.2030 0.1393
0.1395 23.13 19500 0.2019 0.1357
0.1265 23.72 20000 0.2023 0.1364
0.1425 24.32 20500 0.1995 0.1362
0.1196 24.91 21000 0.2033 0.1368
0.1251 25.5 21500 0.2013 0.1357
0.1175 26.1 22000 0.2056 0.1360
0.1278 26.69 22500 0.2026 0.1353
0.1223 27.28 23000 0.1985 0.1365
0.1195 27.88 23500 0.2004 0.1358
0.1167 28.47 24000 0.1956 0.1364
0.1167 29.06 24500 0.2004 0.1350
0.1143 29.66 25000 0.2019 0.1347

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3
Downloads last month
17
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.