metadata
inference: true
library_name: transformers
tags:
- fluently-lm
- fluently
- prinum
- instruct
- trained
- math
- roleplay
- reasoning
- axolotl
- unsloth
- argilla
- qwen2
license: mit
language:
- en
- fr
- es
- ru
- zh
- ja
- fa
- code
datasets:
- fluently-sets/ultraset
- fluently-sets/ultrathink
- fluently-sets/reasoning-1-1k
- fluently-sets/MATH-500-Overall
pipeline_tag: text-generation
FluentlyLM Prinum (32B-version)
Introducing the first standalone model from Project Fluently LM! We worked on it for several months, used different approaches, and eventually found the optimal one.
Model Details
Model Description
- Developed by: @fluently-lm
- Model type: Causal Language Models (QwenForCausalLM, LM Transformer)
- Number of Parameters: 32.5B
- Number of Paramaters (Non-Embedding): 31.0B
- Number of Layers: 64
- Number of Attention Heads (GQA): 40 for Q and 8 for KV
- Context Length: Full 131,072 tokens
- Language(s) (NLP): English, French, Spanish, Russian, Chinese, Japanese, Persian (official support)
- License: MIT
Quickstart
Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents.
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "fluently-lm/FluentlyLM-Prinum"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Write a quick sort algorithm."
messages = [
{"role": "system", "content": "You are FluentlyLM, created by Project Fluently. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=1024
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
GGUF-using
You can also use our model locally via GGUF file in various interfaces and workflows, we offer several repos for downloading GGUF:
- mradermacher/FluentlyLM-Prinum-GGUF (all GGUF-quants)
- fluently-lm/FluentlyLM-Prinum-Q4_K_M-GGUF (only Q4_K_M-quant) (coming soon...)
Model recipe
Evolution
🏆 12th place on Open LLM Leaderboard
Special thanks
🤗 We are grateful for open source resources, technologies and assistance from: Unsloth AI, Axolotl AI, Argilla, Alibaba Cloud: Qwen, NVIDIA and NousResearch.