|
import torch |
|
from speechbrain.inference.interfaces import Pretrained |
|
|
|
class AttentionMLP(torch.nn.Module): |
|
def __init__(self, input_dim, hidden_dim): |
|
super(AttentionMLP, self).__init__() |
|
self.layers = torch.nn.Sequential( |
|
torch.nn.Linear(input_dim, hidden_dim), |
|
torch.nn.ReLU(), |
|
torch.nn.Linear(hidden_dim, 1, bias=False), |
|
) |
|
|
|
def forward(self, x): |
|
x = self.layers(x) |
|
att_w = torch.nn.functional.softmax(x, dim=2) |
|
return att_w |
|
|
|
|
|
class Discrete_EmbeddingLayer(torch.nn.Module): |
|
"""This class handles embedding layers for discrete tokens. |
|
|
|
Arguments |
|
--------- |
|
num_codebooks: int , |
|
number of codebooks of the tokenizer. |
|
vocab_size : int, |
|
size of the dictionary of embeddings |
|
emb_dim: int , |
|
the size of each embedding vector |
|
pad_index: int (default: 0), |
|
If specified, the entries at padding_idx do not contribute to the gradient. |
|
init: boolean (default: False): |
|
If set to True, init the embedding with the tokenizer embedding otherwise init randomly. |
|
freeze: boolean (default: False) |
|
If True, the embedding is frozen. If False, the model will be trained |
|
alongside with the rest of the pipeline. |
|
|
|
Example |
|
------- |
|
>>> from speechbrain.lobes.models.huggingface_transformers.encodec import Encodec |
|
>>> model_hub = "facebook/encodec_24khz" |
|
>>> save_path = "savedir" |
|
>>> model = Encodec(model_hub, save_path) |
|
>>> audio = torch.randn(4, 1000) |
|
>>> length = torch.tensor([1.0, .5, .75, 1.0]) |
|
>>> tokens, emb = model.encode(audio, length) |
|
>>> print(tokens.shape) |
|
torch.Size([4, 4, 2]) |
|
>>> emb= Discrete_EmbeddingLayer(2, 1024, 1024) |
|
>>> in_emb = emb(tokens) |
|
>>> print(in_emb.shape) |
|
torch.Size([4, 4, 2, 1024]) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_codebooks, |
|
vocab_size, |
|
emb_dim, |
|
pad_index=0, |
|
init=False, |
|
freeze=False, |
|
): |
|
super(Discrete_EmbeddingLayer, self).__init__() |
|
self.vocab_size = vocab_size |
|
self.num_codebooks = num_codebooks |
|
self.freeze = freeze |
|
self.embedding = torch.nn.Embedding( |
|
num_codebooks * vocab_size, emb_dim |
|
).requires_grad_(not self.freeze) |
|
self.init = init |
|
|
|
def init_embedding(self, weights): |
|
with torch.no_grad(): |
|
self.embedding.weight = torch.nn.Parameter(weights) |
|
|
|
def forward(self, in_tokens): |
|
"""Computes the embedding for discrete tokens. |
|
a sample. |
|
|
|
Arguments |
|
--------- |
|
in_tokens : torch.Tensor |
|
A (Batch x Time x num_codebooks) |
|
audio sample |
|
Returns |
|
------- |
|
in_embs : torch.Tensor |
|
""" |
|
with torch.set_grad_enabled(not self.freeze): |
|
|
|
in_tokens += torch.arange( |
|
0, |
|
self.num_codebooks * self.vocab_size, |
|
self.vocab_size, |
|
device=in_tokens.device, |
|
) |
|
|
|
in_embs = self.embedding(in_tokens) |
|
return in_embs |
|
|
|
class CustomEncoderClassifier(Pretrained): |
|
"""A ready-to-use class for utterance-level classification (e.g, speaker-id, |
|
language-id, emotion recognition, keyword spotting, etc). |
|
The class assumes that an self-supervised encoder like wav2vec2/hubert and a classifier model |
|
are defined in the yaml file. If you want to |
|
convert the predicted index into a corresponding text label, please |
|
provide the path of the label_encoder in a variable called 'lab_encoder_file' |
|
within the yaml. |
|
The class can be used either to run only the encoder (encode_batch()) to |
|
extract embeddings or to run a classification step (classify_batch()). |
|
``` |
|
Example |
|
------- |
|
>>> import torchaudio |
|
>>> from speechbrain.pretrained import EncoderClassifier |
|
>>> # Model is downloaded from the speechbrain HuggingFace repo |
|
>>> tmpdir = getfixture("tmpdir") |
|
>>> classifier = EncoderClassifier.from_hparams( |
|
... source="speechbrain/spkrec-ecapa-voxceleb", |
|
... savedir=tmpdir, |
|
... ) |
|
>>> # Compute embeddings |
|
>>> signal, fs = torchaudio.load("samples/audio_samples/example1.wav") |
|
>>> embeddings = classifier.encode_batch(signal) |
|
>>> # Classification |
|
>>> prediction = classifier .classify_batch(signal) |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.similarity = torch.nn.CosineSimilarity(dim=-1, eps=1e-6) |
|
|
|
def encode_batch(self, wavs, wav_lens=None, normalize=False): |
|
"""Encodes the input audio into a single vector embedding. |
|
The waveforms should already be in the model's desired format. |
|
You can call: |
|
``normalized = <this>.normalizer(signal, sample_rate)`` |
|
to get a correctly converted signal in most cases. |
|
Arguments |
|
--------- |
|
wavs : torch.tensor |
|
Batch of waveforms [batch, time, channels] or [batch, time] |
|
depending on the model. Make sure the sample rate is fs=16000 Hz. |
|
wav_lens : torch.tensor |
|
Lengths of the waveforms relative to the longest one in the |
|
batch, tensor of shape [batch]. The longest one should have |
|
relative length 1.0 and others len(waveform) / max_length. |
|
Used for ignoring padding. |
|
normalize : bool |
|
If True, it normalizes the embeddings with the statistics |
|
contained in mean_var_norm_emb. |
|
Returns |
|
------- |
|
torch.tensor |
|
The encoded batch |
|
""" |
|
|
|
if len(wavs.shape) == 1: |
|
wavs = wavs.unsqueeze(0) |
|
|
|
|
|
if wav_lens is None: |
|
wav_lens = torch.ones(wavs.shape[0], device=self.device) |
|
|
|
|
|
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device) |
|
wavs = wavs.float() |
|
|
|
with torch.no_grad(): |
|
self.hparams.codec.to(self.device).eval() |
|
tokens, _, _ = self.hparams.codec( |
|
wavs, wav_lens, **self.hparams.tokenizer_config |
|
) |
|
embeddings = self.mods.discrete_embedding_layer(tokens) |
|
att_w = self.mods.attention_mlp(embeddings) |
|
feats = torch.matmul(att_w.transpose(2, -1), embeddings).squeeze(-2) |
|
embeddings = self.mods.embedding_model(feats, wav_lens) |
|
return embeddings.squeeze(1) |
|
|
|
|
|
def verify_batch( |
|
self, wavs1, wavs2, wav1_lens=None, wav2_lens=None, threshold=0.25 |
|
): |
|
"""Performs speaker verification with cosine distance. |
|
|
|
It returns the score and the decision (0 different speakers, |
|
1 same speakers). |
|
|
|
Arguments |
|
--------- |
|
wavs1 : Torch.Tensor |
|
torch.Tensor containing the speech waveform1 (batch, time). |
|
Make sure the sample rate is fs=16000 Hz. |
|
wavs2 : Torch.Tensor |
|
torch.Tensor containing the speech waveform2 (batch, time). |
|
Make sure the sample rate is fs=16000 Hz. |
|
wav1_lens : Torch.Tensor |
|
torch.Tensor containing the relative length for each sentence |
|
in the length (e.g., [0.8 0.6 1.0]) |
|
wav2_lens : Torch.Tensor |
|
torch.Tensor containing the relative length for each sentence |
|
in the length (e.g., [0.8 0.6 1.0]) |
|
threshold : Float |
|
Threshold applied to the cosine distance to decide if the |
|
speaker is different (0) or the same (1). |
|
|
|
Returns |
|
------- |
|
score |
|
The score associated to the binary verification output |
|
(cosine distance). |
|
prediction |
|
The prediction is 1 if the two signals in input are from the same |
|
speaker and 0 otherwise. |
|
""" |
|
emb1 = self.encode_batch(wavs1, wav1_lens, normalize=False) |
|
emb2 = self.encode_batch(wavs2, wav2_lens, normalize=False) |
|
score = self.similarity(emb1, emb2) |
|
return score, score > threshold |
|
|
|
def verify_files(self, path_x, path_y, **kwargs): |
|
"""Speaker verification with cosine distance |
|
|
|
Returns the score and the decision (0 different speakers, |
|
1 same speakers). |
|
|
|
Arguments |
|
--------- |
|
path_x : str |
|
Path to file x |
|
path_y : str |
|
Path to file y |
|
**kwargs : dict |
|
Arguments to ``load_audio`` |
|
|
|
Returns |
|
------- |
|
score |
|
The score associated to the binary verification output |
|
(cosine distance). |
|
prediction |
|
The prediction is 1 if the two signals in input are from the same |
|
speaker and 0 otherwise. |
|
""" |
|
waveform_x = self.load_audio(path_x, **kwargs) |
|
waveform_y = self.load_audio(path_y, **kwargs) |
|
|
|
batch_x = waveform_x.unsqueeze(0) |
|
batch_y = waveform_y.unsqueeze(0) |
|
|
|
score, decision = self.verify_batch(batch_x, batch_y) |
|
|
|
return score[0], decision[0] |