File size: 9,349 Bytes
ad89d98 2845cc4 ad89d98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import torch
from speechbrain.inference.interfaces import Pretrained
class AttentionMLP(torch.nn.Module):
def __init__(self, input_dim, hidden_dim):
super(AttentionMLP, self).__init__()
self.layers = torch.nn.Sequential(
torch.nn.Linear(input_dim, hidden_dim),
torch.nn.ReLU(),
torch.nn.Linear(hidden_dim, 1, bias=False),
)
def forward(self, x):
x = self.layers(x)
att_w = torch.nn.functional.softmax(x, dim=2)
return att_w
class Discrete_EmbeddingLayer(torch.nn.Module):
"""This class handles embedding layers for discrete tokens.
Arguments
---------
num_codebooks: int ,
number of codebooks of the tokenizer.
vocab_size : int,
size of the dictionary of embeddings
emb_dim: int ,
the size of each embedding vector
pad_index: int (default: 0),
If specified, the entries at padding_idx do not contribute to the gradient.
init: boolean (default: False):
If set to True, init the embedding with the tokenizer embedding otherwise init randomly.
freeze: boolean (default: False)
If True, the embedding is frozen. If False, the model will be trained
alongside with the rest of the pipeline.
Example
-------
>>> from speechbrain.lobes.models.huggingface_transformers.encodec import Encodec
>>> model_hub = "facebook/encodec_24khz"
>>> save_path = "savedir"
>>> model = Encodec(model_hub, save_path)
>>> audio = torch.randn(4, 1000)
>>> length = torch.tensor([1.0, .5, .75, 1.0])
>>> tokens, emb = model.encode(audio, length)
>>> print(tokens.shape)
torch.Size([4, 4, 2])
>>> emb= Discrete_EmbeddingLayer(2, 1024, 1024)
>>> in_emb = emb(tokens)
>>> print(in_emb.shape)
torch.Size([4, 4, 2, 1024])
"""
def __init__(
self,
num_codebooks,
vocab_size,
emb_dim,
pad_index=0,
init=False,
freeze=False,
):
super(Discrete_EmbeddingLayer, self).__init__()
self.vocab_size = vocab_size
self.num_codebooks = num_codebooks
self.freeze = freeze
self.embedding = torch.nn.Embedding(
num_codebooks * vocab_size, emb_dim
).requires_grad_(not self.freeze)
self.init = init
def init_embedding(self, weights):
with torch.no_grad():
self.embedding.weight = torch.nn.Parameter(weights)
def forward(self, in_tokens):
"""Computes the embedding for discrete tokens.
a sample.
Arguments
---------
in_tokens : torch.Tensor
A (Batch x Time x num_codebooks)
audio sample
Returns
-------
in_embs : torch.Tensor
"""
with torch.set_grad_enabled(not self.freeze):
# Add unique token IDs across diffrent codebooks by adding num_codebooks * vocab_size
in_tokens += torch.arange(
0,
self.num_codebooks * self.vocab_size,
self.vocab_size,
device=in_tokens.device,
)
# Forward Pass to embedding and
in_embs = self.embedding(in_tokens)
return in_embs
class CustomEncoderClassifier(Pretrained):
"""A ready-to-use class for utterance-level classification (e.g, speaker-id,
language-id, emotion recognition, keyword spotting, etc).
The class assumes that an self-supervised encoder like wav2vec2/hubert and a classifier model
are defined in the yaml file. If you want to
convert the predicted index into a corresponding text label, please
provide the path of the label_encoder in a variable called 'lab_encoder_file'
within the yaml.
The class can be used either to run only the encoder (encode_batch()) to
extract embeddings or to run a classification step (classify_batch()).
```
Example
-------
>>> import torchaudio
>>> from speechbrain.pretrained import EncoderClassifier
>>> # Model is downloaded from the speechbrain HuggingFace repo
>>> tmpdir = getfixture("tmpdir")
>>> classifier = EncoderClassifier.from_hparams(
... source="speechbrain/spkrec-ecapa-voxceleb",
... savedir=tmpdir,
... )
>>> # Compute embeddings
>>> signal, fs = torchaudio.load("samples/audio_samples/example1.wav")
>>> embeddings = classifier.encode_batch(signal)
>>> # Classification
>>> prediction = classifier .classify_batch(signal)
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.similarity = torch.nn.CosineSimilarity(dim=-1, eps=1e-6)
def encode_batch(self, wavs, wav_lens=None, normalize=False):
"""Encodes the input audio into a single vector embedding.
The waveforms should already be in the model's desired format.
You can call:
``normalized = <this>.normalizer(signal, sample_rate)``
to get a correctly converted signal in most cases.
Arguments
---------
wavs : torch.tensor
Batch of waveforms [batch, time, channels] or [batch, time]
depending on the model. Make sure the sample rate is fs=16000 Hz.
wav_lens : torch.tensor
Lengths of the waveforms relative to the longest one in the
batch, tensor of shape [batch]. The longest one should have
relative length 1.0 and others len(waveform) / max_length.
Used for ignoring padding.
normalize : bool
If True, it normalizes the embeddings with the statistics
contained in mean_var_norm_emb.
Returns
-------
torch.tensor
The encoded batch
"""
# Manage single waveforms in input
if len(wavs.shape) == 1:
wavs = wavs.unsqueeze(0)
# Assign full length if wav_lens is not assigned
if wav_lens is None:
wav_lens = torch.ones(wavs.shape[0], device=self.device)
# Storing waveform in the specified device
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
wavs = wavs.float()
with torch.no_grad():
self.hparams.codec.to(self.device).eval()
tokens, _, _ = self.hparams.codec(
wavs, wav_lens, **self.hparams.tokenizer_config
)
embeddings = self.mods.discrete_embedding_layer(tokens)
att_w = self.mods.attention_mlp(embeddings)
feats = torch.matmul(att_w.transpose(2, -1), embeddings).squeeze(-2)
embeddings = self.mods.embedding_model(feats, wav_lens)
return embeddings.squeeze(1)
def verify_batch(
self, wavs1, wavs2, wav1_lens=None, wav2_lens=None, threshold=0.25
):
"""Performs speaker verification with cosine distance.
It returns the score and the decision (0 different speakers,
1 same speakers).
Arguments
---------
wavs1 : Torch.Tensor
torch.Tensor containing the speech waveform1 (batch, time).
Make sure the sample rate is fs=16000 Hz.
wavs2 : Torch.Tensor
torch.Tensor containing the speech waveform2 (batch, time).
Make sure the sample rate is fs=16000 Hz.
wav1_lens : Torch.Tensor
torch.Tensor containing the relative length for each sentence
in the length (e.g., [0.8 0.6 1.0])
wav2_lens : Torch.Tensor
torch.Tensor containing the relative length for each sentence
in the length (e.g., [0.8 0.6 1.0])
threshold : Float
Threshold applied to the cosine distance to decide if the
speaker is different (0) or the same (1).
Returns
-------
score
The score associated to the binary verification output
(cosine distance).
prediction
The prediction is 1 if the two signals in input are from the same
speaker and 0 otherwise.
"""
emb1 = self.encode_batch(wavs1, wav1_lens, normalize=False)
emb2 = self.encode_batch(wavs2, wav2_lens, normalize=False)
score = self.similarity(emb1, emb2)
return score, score > threshold
def verify_files(self, path_x, path_y, **kwargs):
"""Speaker verification with cosine distance
Returns the score and the decision (0 different speakers,
1 same speakers).
Arguments
---------
path_x : str
Path to file x
path_y : str
Path to file y
**kwargs : dict
Arguments to ``load_audio``
Returns
-------
score
The score associated to the binary verification output
(cosine distance).
prediction
The prediction is 1 if the two signals in input are from the same
speaker and 0 otherwise.
"""
waveform_x = self.load_audio(path_x, **kwargs)
waveform_y = self.load_audio(path_y, **kwargs)
# Fake batches:
batch_x = waveform_x.unsqueeze(0)
batch_y = waveform_y.unsqueeze(0)
# Verify:
score, decision = self.verify_batch(batch_x, batch_y)
# Squeeze:
return score[0], decision[0] |