File size: 1,958 Bytes
e184710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base-finetuned-kinetics
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-kinetics-finetuned-conflab-traj-direction-rh-v10
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-finetuned-kinetics-finetuned-conflab-traj-direction-rh-v10

This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4978
- Accuracy: 0.5756

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 819

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 1.989         | 0.1441 | 118  | 1.8787          | 0.2670   |
| 1.3092        | 1.1441 | 236  | 1.6428          | 0.4272   |
| 1.0096        | 2.1441 | 354  | 1.4351          | 0.4757   |
| 0.604         | 3.1441 | 472  | 1.3919          | 0.5      |
| 0.2381        | 4.1441 | 590  | 1.3555          | 0.5437   |
| 0.2201        | 5.1441 | 708  | 1.3875          | 0.5777   |
| 0.1171        | 6.1355 | 819  | 1.3528          | 0.6019   |


### Framework versions

- Transformers 4.41.0
- Pytorch 1.12.0+cu116
- Datasets 2.19.1
- Tokenizers 0.19.1