flatala-research commited on
Commit
e184710
·
verified ·
1 Parent(s): 46f8c73

Model save

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ base_model: MCG-NJU/videomae-base-finetuned-kinetics
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: videomae-base-finetuned-kinetics-finetuned-conflab-traj-direction-rh-v10
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # videomae-base-finetuned-kinetics-finetuned-conflab-traj-direction-rh-v10
17
+
18
+ This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.4978
21
+ - Accuracy: 0.5756
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_ratio: 0.1
47
+ - training_steps: 819
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
53
+ | 1.989 | 0.1441 | 118 | 1.8787 | 0.2670 |
54
+ | 1.3092 | 1.1441 | 236 | 1.6428 | 0.4272 |
55
+ | 1.0096 | 2.1441 | 354 | 1.4351 | 0.4757 |
56
+ | 0.604 | 3.1441 | 472 | 1.3919 | 0.5 |
57
+ | 0.2381 | 4.1441 | 590 | 1.3555 | 0.5437 |
58
+ | 0.2201 | 5.1441 | 708 | 1.3875 | 0.5777 |
59
+ | 0.1171 | 6.1355 | 819 | 1.3528 | 0.6019 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.41.0
65
+ - Pytorch 1.12.0+cu116
66
+ - Datasets 2.19.1
67
+ - Tokenizers 0.19.1