A sentencepiece tokenizer was applied to a corpus of 269 million Russian search queries.
The encoder-model was trained for the e-commerce search query similarity task, and the search queries were short.
The dataset for validation, which was manually annotated, comprised 362,000 instances.
## don't forget
# pip install protobuf sentencepiece
from transformers import AutoModel, AutoTokenizer
model = AutoModel.from_pretrained('fkrasnov2/SBE')
tokenizer = AutoTokenizer.from_pretrained('fkrasnov2/SBE')
input_ids = tokenizer.encode("чёрное платье", max_length=model.config.max_position_embeddings, truncation=True, return_tensors='pt')
model.eval()
vector = model(input_ids=input_ids, attention_mask=input_ids!=tokenizer.pad_token_id)[0][0,0]
assert model.config.hidden_size == vector.shape[0]
This model is designed for use in e-commerce IR and helps differentiate products.
The same products:
cos ( SBE("apple 16 синий про макс 256"), SBE("iphone 16 синий pro max 256") ) = 0.96
cos ( SBE("iphone 15 pro max"), SBE("айфон 15 про макс") ) = 0.98
Different products:
- cos ( SBE("iphone 15 pro max"), SBE("iphone 16 pro max") ) = 0.85
- Downloads last month
- 69