πŸ€– LLM Evolutionary Merge

πŸ€— Model | πŸ“‚ Github | ✍️ Blog | πŸ’‘Inspired by Sakana AI

robot This project aims to optimize model merging by integrating LLMs into evolutionary strategies in a novel way. Instead of using the CMA-ES approach, the goal is to improve model optimization by leveraging the search capabilities of LLMs to explore the parameter space more efficiently and adjust the search scope based on high-performing solutions.

Currently, the project supports optimization only within the Parameter Space, but I plan to extend its functionality to enable merging and optimization in the Data Flow Space as well. This will further enhance model merging by optimizing the interaction between data flow and parameters.

Performance

I focused on creating a high-performing Korean model solely through merging, without additional model training.

Merging Recipe
base_model: meta-llama/Llama-3.1-8B
dtype: bfloat16
merge_method: task_arithmetic
allow_negative_weights: true
parameters:
  int8_mask: 1.0
  normalize: 1.0
slices:
- sources:
  - layer_range: [0, 2]
    model: NCSOFT/Llama-VARCO-8B-Instruct
    parameters:
      weight: 1
  - layer_range: [0, 2]
    model: akjindal53244/Llama-3.1-Storm-8B
    parameters:
      weight: 0.3475802891062396
  - layer_range: [0, 2]
    model: meta-llama/Llama-3.1-8B

- sources:
  - layer_range: [2, 4]
    model: NCSOFT/Llama-VARCO-8B-Instruct
    parameters:
      weight: 0.8971381657317269
  - layer_range: [2, 4]
    model: akjindal53244/Llama-3.1-Storm-8B
    parameters:
      weight: 0.45369921781118544
  - layer_range: [2, 4]
    model: meta-llama/Llama-3.1-8B

- sources:
  - layer_range: [4, 6]
    model: NCSOFT/Llama-VARCO-8B-Instruct
    parameters:
      weight: 0.5430828084884667
  - layer_range: [4, 6]
    model: akjindal53244/Llama-3.1-Storm-8B
    parameters:
      weight: 0.2834723715836387
  - layer_range: [4, 6]
    model: meta-llama/Llama-3.1-8B

- sources:
  - layer_range: [6, 8]
    model: NCSOFT/Llama-VARCO-8B-Instruct
    parameters:
      weight: 0.419043948030593
  - layer_range: [6, 8]
    model: akjindal53244/Llama-3.1-Storm-8B
    parameters:
      weight: 0.3705268601566145
  - layer_range: [6, 8]
    model: meta-llama/Llama-3.1-8B

- sources:
  - layer_range: [8, 10]
    model: NCSOFT/Llama-VARCO-8B-Instruct
    parameters:
      weight: 0.3813333860404775
  - layer_range: [8, 10]
    model: akjindal53244/Llama-3.1-Storm-8B
    parameters:
      weight: 0.7634501436288518
  - layer_range: [8, 10]
    model: meta-llama/Llama-3.1-8B

- sources:
  - layer_range: [10, 12]
    model: NCSOFT/Llama-VARCO-8B-Instruct
    parameters:
      weight: 0.49134830660275863
  - layer_range: [10, 12]
    model: akjindal53244/Llama-3.1-Storm-8B
    parameters:
      weight: 0.7211994938499454
  - layer_range: [10, 12]
    model: meta-llama/Llama-3.1-8B

- sources:
  - layer_range: [12, 14]
    model: NCSOFT/Llama-VARCO-8B-Instruct
    parameters:
      weight: 0.9218963071448836
  - layer_range: [12, 14]
    model: akjindal53244/Llama-3.1-Storm-8B
    parameters:
      weight: 0.5117022419864319
  - layer_range: [12, 14]
    model: meta-llama/Llama-3.1-8B

- sources:
  - layer_range: [14, 16]
    model: NCSOFT/Llama-VARCO-8B-Instruct
    parameters:
      weight: 0.8238938467581831
  - layer_range: [14, 16]
    model: akjindal53244/Llama-3.1-Storm-8B
    parameters:
      weight: 0.851712316016478
  - layer_range: [14, 16]
    model: meta-llama/Llama-3.1-8B

- sources:
  - layer_range: [16, 18]
    model: NCSOFT/Llama-VARCO-8B-Instruct
    parameters:
      weight: 0.3543028846914006
  - layer_range: [16, 18]
    model: akjindal53244/Llama-3.1-Storm-8B
    parameters:
      weight: 0.6864368345788241
  - layer_range: [16, 18]
    model: meta-llama/Llama-3.1-8B

- sources:
  - layer_range: [18, 20]
    model: NCSOFT/Llama-VARCO-8B-Instruct
    parameters:
      weight: 0.9189961100847883
  - layer_range: [18, 20]
    model: akjindal53244/Llama-3.1-Storm-8B
    parameters:
      weight: 0.5800251781306379
  - layer_range: [18, 20]
    model: meta-llama/Llama-3.1-8B

- sources:
  - layer_range: [20, 22]
    model: NCSOFT/Llama-VARCO-8B-Instruct
    parameters:
      weight: 0.9281691677008521
  - layer_range: [20, 22]
    model: akjindal53244/Llama-3.1-Storm-8B
    parameters:
      weight: 0.5356892784211416
  - layer_range: [20, 22]
    model: meta-llama/Llama-3.1-8B

- sources:
  - layer_range: [22, 24]
    model: NCSOFT/Llama-VARCO-8B-Instruct
    parameters:
      weight: 0.839268407952539
  - layer_range: [22, 24]
    model: akjindal53244/Llama-3.1-Storm-8B
    parameters:
      weight: 0.5082186376599986
  - layer_range: [22, 24]
    model: meta-llama/Llama-3.1-8B

- sources:
  - layer_range: [24, 26]
    model: NCSOFT/Llama-VARCO-8B-Instruct
    parameters:
      weight: 0.6241902192095534
  - layer_range: [24, 26]
    model: akjindal53244/Llama-3.1-Storm-8B
    parameters:
      weight: 0.2945221540685877
  - layer_range: [24, 26]
    model: meta-llama/Llama-3.1-8B

- sources:
  - layer_range: [26, 28]
    model: NCSOFT/Llama-VARCO-8B-Instruct
    parameters:
      weight: 0.7030728026501202
  - layer_range: [26, 28]
    model: akjindal53244/Llama-3.1-Storm-8B
    parameters:
      weight: 0.2350478509634181
  - layer_range: [26, 28]
    model: meta-llama/Llama-3.1-8B

- sources:
  - layer_range: [28, 30]
    model: NCSOFT/Llama-VARCO-8B-Instruct
    parameters:
      weight: 0.2590342230366074
  - layer_range: [28, 30]
    model: akjindal53244/Llama-3.1-Storm-8B
    parameters:
      weight: 0.006083182855312869
  - layer_range: [28, 30]
    model: meta-llama/Llama-3.1-8B

- sources:
  - layer_range: [30, 32]
    model: NCSOFT/Llama-VARCO-8B-Instruct
    parameters:
      weight: 1
  - layer_range: [30, 32]
    model: akjindal53244/Llama-3.1-Storm-8B
    parameters:
      weight: 0.234650395825126
  - layer_range: [30, 32]
    model: meta-llama/Llama-3.1-8B

The models used for merging are listed below.

Base Model: meta-llama/Llama-3.1-8B
Model 1: NCSOFT/Llama-VARCO-8B-Instruct
Model 2: akjindal53244/Llama-3.1-Storm-8B

Comparing LLMEvoLlama with Source in Korean Benchmark

korean_performance

  • LogicKor: A benchmark that evaluates various linguistic abilities in Korean, including math, writing, coding, comprehension, grammar, and reasoning skills. (https://lk.instruct.kr/)

  • KoBest: A benchmark consisting of five natural language understanding tasks designed to test advanced Korean language comprehension. (https://arxiv.org/abs/2204.04541)

Comparing LLMEvoLlama with Source in English Benchmark and Total Average

Model truthfulqa_mc2 (0-shot acc) arc_challenge (0-shot acc) Korean + English Performance (avg)
VARCO 0.53 0.47 0.68
Llama-Instruct 0.53 0.52 0.66
Llama-Storm 0.59 0.52 0.67
LLMEvoLLaMA 0.57 0.50 0.71
Downloads last month
133
Safetensors
Model size
8.03B params
Tensor type
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for fiveflow/LLMEvoLLaMA-3.1-8B-v0.1

Finetuned
(3)
this model