BGE m3 Uzbek Legal Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-m3 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: uz
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("fitlemon/bge-m3-uz-legal-matryoshka")
# Run inference
sentences = [
"Intizomiy jazolar qanday qo'llaniladi?",
'Intizomiy javobgarlik xodim tomonidan intizomiy qilmish (ushbu Kodeks 301-moddasining \nikkinchi qismi) sodir etilganligi uchun yuzaga keladigan va ushbu xodimga nisbatan intizomiy jazo \nchorasi qo‘llanilishida ifodalanadigan yuridik javobgarlikdir. \nIntizomiy javobgarlikning turlari umumiy va maxsus intizomiy javobgarlikdan iboratdir. \nUmumiy intizomiy javobgarlik ushbu Kodeks va ichki mehnat tartibi qoidalari bilan tartibga \nsolinadigan javobgarlik bo‘lib, u xodimga nisbatan ushbu Kodeksning 312-moddasida nazarda \ntutilgan intizomiy jazo choralaridan birini qo‘llashdan iborat va barcha xodimlarga nisbatan tatbiq \netiladi, bundan o‘zi uchun maxsus intizomiy javobgarlik belgilangan shaxslar mustasno. \nMaxsus intizomiy javobgarlik xodimlarning faqat alohida toifalari uchun qonunda, \nshuningdek intizom to‘g‘risidagi ustavlar va nizomlarda nazarda tutilgan hamda xodimga nisbatan tegishli qonunda, intizom haqidagi ustavda va nizomda nazarda tutilgan intizomi y choralarni \nqo‘llashdan iborat javobgarlikdir.',
'Ushbu Kodeksda nazarda tuti lgan asoslardan tashqari, O‘zbekiston Respublikasi hududida \nmehnat faoliyatini amalga oshirish huquqiga doir tasdiqnomaning amal qilish muddati tugatilganligi \nyoki bekor qilinganligi chet el fuqarosi bilan tuzilgan mehnat shartnomasini bekor qilish uchun a sos \nbo‘ladi. \nO‘zbekiston Respublikasi hududida mehnat faoliyatini amalga oshirish huquqiga doir \ntasdiqnomaning amal qilish muddati tugashi munosabati bilan uning amal qilish muddati tugagan \nkunda mehnat shartnomasi bekor qilinishi lozim. \nO‘zbekiston Resp ublikasi hududida mehnat faoliyatini amalga oshirish huquqiga doir \ntasdiqnoma bekor qilinganda mehnat shartnomasi ish beruvchi O‘zbekiston Respublikasi Bandlik va \nmehnat munosabatlari vazirligi huzuridagi Tashqi mehnat migratsiyasi agentligining tegishli \nxabarnomasini olgan kunda bekor qilinishi lozim.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_1024
,dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_1024 | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|---|
cosine_accuracy@1 | 0.4915 | 0.4839 | 0.4858 | 0.4687 | 0.4668 | 0.482 |
cosine_accuracy@3 | 0.8178 | 0.8083 | 0.8027 | 0.7894 | 0.7837 | 0.7552 |
cosine_accuracy@5 | 0.8956 | 0.8918 | 0.8843 | 0.8805 | 0.8653 | 0.8558 |
cosine_accuracy@10 | 0.9469 | 0.9431 | 0.9431 | 0.9374 | 0.9279 | 0.9241 |
cosine_precision@1 | 0.4915 | 0.4839 | 0.4858 | 0.4687 | 0.4668 | 0.482 |
cosine_precision@3 | 0.2726 | 0.2694 | 0.2676 | 0.2631 | 0.2612 | 0.2517 |
cosine_precision@5 | 0.1791 | 0.1784 | 0.1769 | 0.1761 | 0.1731 | 0.1712 |
cosine_precision@10 | 0.0947 | 0.0943 | 0.0943 | 0.0937 | 0.0928 | 0.0924 |
cosine_recall@1 | 0.4915 | 0.4839 | 0.4858 | 0.4687 | 0.4668 | 0.482 |
cosine_recall@3 | 0.8178 | 0.8083 | 0.8027 | 0.7894 | 0.7837 | 0.7552 |
cosine_recall@5 | 0.8956 | 0.8918 | 0.8843 | 0.8805 | 0.8653 | 0.8558 |
cosine_recall@10 | 0.9469 | 0.9431 | 0.9431 | 0.9374 | 0.9279 | 0.9241 |
cosine_ndcg@10 | 0.7326 | 0.7268 | 0.7245 | 0.712 | 0.7055 | 0.7055 |
cosine_mrr@10 | 0.6621 | 0.6556 | 0.6529 | 0.6382 | 0.6328 | 0.6348 |
cosine_map@100 | 0.6646 | 0.6584 | 0.6555 | 0.6411 | 0.6362 | 0.6383 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 4,737 training samples
- Columns:
question
andchunk
- Approximate statistics based on the first 1000 samples:
question chunk type string string details - min: 10 tokens
- mean: 22.31 tokens
- max: 45 tokens
- min: 30 tokens
- mean: 269.53 tokens
- max: 520 tokens
- Samples:
question chunk Noqulay tabiiy-iqlim sharoitlaridagi ish uchun mehnatga haq to‘lash koeffitsiyentlari haqida {chapter} va {section}da nima deyiladi?
Noqulay tabiiy-iqlim sharoitlaridagi ish uchun mehnatga haq to‘lash koeffitsiyenti ayrim
hududlardagi mehnat sharoitlarining xususiyatlari inobatga olingan holda xodimlarga to‘lanadigan
kompensatsiya xususiyatiga ega bo‘lgan ustama turidir. Koeffitsiyentlarning eng kam miqdorlari va
ularni qo‘llash tartibi O‘zbekiston Respublikasi Vazirlar Mahkamasi tomonidan belgilanadi.
28-bob. Xodim mehnatining xususiyati bilan bog‘liq bo‘lgan mehnatni huquqiy jihatdan
tartibga solishning o‘ziga xos xususiyatlari
1-§. Tashkilot rahbarining, uning o‘rinbosarlarining, tashkilot bosh buxgalterining va
tashkilot alohida bo‘linmasi rahbarining mehnatini huquqiy jihatdan tartibga solishning
o‘ziga xos xususiyatlariHomiladorlik yoki farzandlar borligi bilan bog‘liq sabablarga ko‘ra ishga qabul qilmaslik qonunga xilofmi?
Ishga qabul qilishni qonunga xilof ravishda rad etishga yo‘l qo‘yilmaydi.
Quyidagilar ishga qabul qilishni qonunga xilof ravishda rad etishdir:
mehnat va mashg‘ulotlar sohasida kamsitishni taqiqlash to‘g‘risidagi talablarni buzish;
ish beruvchi tomonidan ishga taklif etilgan shaxslarni ishga qabul qilmaslik;
ish beruvchi qonunga muvofiq mehnat shartnomasini tuzishi shart bo‘lgan shaxslarni (ish
o‘rinlarining belgilangan eng k am soni hisobiga ishga yuborilgan shaxslarni, ish beruvchi alohida
asoslar bo‘yicha mehnat shartnomasini bekor qilgan shaxslarni, ular qayta ishga qabul qilingan
taqdirda va boshqalarni) ishga qabul qilmaslik; homiladorlik yoki farzandlar borligi bilan bog‘liq sabablarga ko‘ra ishga qabul qilmaslik;
Oldingi tahrirga qarang.
sudlanganligi, shu jumladan tugallangan va olib tashlangan sudlanganligi sababli shaxslarni
ishga qabul qi lmaslik, bundan qonunchilikda nazarda tutilgan hollar mustasno, yoxud shaxslarni
ularning qarindoshlari sudlanganligi, shu j...Xizmat safariga yuborish uchun nogironligi bo‘lgan xodimlarning roziligi qanday ahamiyatga ega {chapter} va {section}da?
Nogironligi bo‘lgan xodimlarni xizmat safariga yuborishga, tungi ishlarga, ish vaqtidan
tashqari ishlarga hamda dam olish va ishlanmaydigan bayram kunlaridagi ishlarga jalb qilishga faqat
ularning roziligi bilan, agar ushbu xodimlar uchun bunday ishlar tibbiy -ijtimoiy ekspert komissiyasi
tavsiyalarida taqiqlanmagan bo‘lsa, yo‘l qo‘yiladi. - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochlearning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1fp16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|---|
0.0169 | 10 | 2.468 | - | - | - | - | - | - |
0.0337 | 20 | 3.0476 | - | - | - | - | - | - |
0.0506 | 30 | 2.0878 | - | - | - | - | - | - |
0.0675 | 40 | 2.1392 | - | - | - | - | - | - |
0.0843 | 50 | 2.3539 | - | - | - | - | - | - |
0.1012 | 60 | 2.367 | - | - | - | - | - | - |
0.1180 | 70 | 1.6277 | - | - | - | - | - | - |
0.1349 | 80 | 2.0299 | - | - | - | - | - | - |
0.1518 | 90 | 1.7242 | - | - | - | - | - | - |
0.1686 | 100 | 1.5173 | - | - | - | - | - | - |
0.1855 | 110 | 1.6598 | - | - | - | - | - | - |
0.2024 | 120 | 1.0105 | - | - | - | - | - | - |
0.2192 | 130 | 1.4555 | - | - | - | - | - | - |
0.2361 | 140 | 0.3602 | - | - | - | - | - | - |
0.2530 | 150 | 0.8921 | - | - | - | - | - | - |
0.2698 | 160 | 0.6716 | - | - | - | - | - | - |
0.2867 | 170 | 0.7469 | - | - | - | - | - | - |
0.3035 | 180 | 1.0121 | - | - | - | - | - | - |
0.3204 | 190 | 0.5142 | - | - | - | - | - | - |
0.3373 | 200 | 3.1294 | - | - | - | - | - | - |
0.3541 | 210 | 1.5231 | - | - | - | - | - | - |
0.3710 | 220 | 0.8671 | - | - | - | - | - | - |
0.3879 | 230 | 1.8561 | - | - | - | - | - | - |
0.4047 | 240 | 1.3404 | - | - | - | - | - | - |
0.4216 | 250 | 1.4122 | - | - | - | - | - | - |
0.4384 | 260 | 1.1002 | - | - | - | - | - | - |
0.4553 | 270 | 1.2149 | - | - | - | - | - | - |
0.4722 | 280 | 2.1969 | - | - | - | - | - | - |
0.4890 | 290 | 1.0054 | - | - | - | - | - | - |
0.5059 | 300 | 1.1025 | - | - | - | - | - | - |
0.5228 | 310 | 0.7316 | - | - | - | - | - | - |
0.5396 | 320 | 1.648 | - | - | - | - | - | - |
0.5565 | 330 | 1.0714 | - | - | - | - | - | - |
0.5734 | 340 | 0.4809 | - | - | - | - | - | - |
0.5902 | 350 | 0.3814 | - | - | - | - | - | - |
0.6071 | 360 | 1.6564 | - | - | - | - | - | - |
0.6239 | 370 | 1.0824 | - | - | - | - | - | - |
0.6408 | 380 | 0.9652 | - | - | - | - | - | - |
0.6577 | 390 | 1.2368 | - | - | - | - | - | - |
0.6745 | 400 | 1.7904 | - | - | - | - | - | - |
0.6914 | 410 | 0.8324 | - | - | - | - | - | - |
0.7083 | 420 | 1.655 | - | - | - | - | - | - |
0.7251 | 430 | 1.1056 | - | - | - | - | - | - |
0.7420 | 440 | 1.6926 | - | - | - | - | - | - |
0.7589 | 450 | 1.1129 | - | - | - | - | - | - |
0.7757 | 460 | 1.3117 | - | - | - | - | - | - |
0.7926 | 470 | 0.9942 | - | - | - | - | - | - |
0.8094 | 480 | 1.0258 | - | - | - | - | - | - |
0.8263 | 490 | 1.5217 | - | - | - | - | - | - |
0.8432 | 500 | 0.8946 | - | - | - | - | - | - |
0.8600 | 510 | 0.8951 | - | - | - | - | - | - |
0.8769 | 520 | 0.5615 | - | - | - | - | - | - |
0.8938 | 530 | 1.6551 | - | - | - | - | - | - |
0.9106 | 540 | 0.2336 | - | - | - | - | - | - |
0.9275 | 550 | 0.9635 | - | - | - | - | - | - |
0.9444 | 560 | 0.6709 | - | - | - | - | - | - |
0.9612 | 570 | 0.9109 | - | - | - | - | - | - |
0.9781 | 580 | 1.7157 | - | - | - | - | - | - |
0.9949 | 590 | 1.2344 | - | - | - | - | - | - |
1.0 | 593 | - | 0.6764 | 0.6677 | 0.6679 | 0.6539 | 0.6370 | 0.6155 |
1.0118 | 600 | 0.2666 | - | - | - | - | - | - |
1.0287 | 610 | 0.8451 | - | - | - | - | - | - |
1.0455 | 620 | 0.7215 | - | - | - | - | - | - |
1.0624 | 630 | 0.3526 | - | - | - | - | - | - |
1.0793 | 640 | 0.7853 | - | - | - | - | - | - |
1.0961 | 650 | 0.8001 | - | - | - | - | - | - |
1.1130 | 660 | 0.2595 | - | - | - | - | - | - |
1.1298 | 670 | 0.4533 | - | - | - | - | - | - |
1.1467 | 680 | 0.5806 | - | - | - | - | - | - |
1.1636 | 690 | 0.4952 | - | - | - | - | - | - |
1.1804 | 700 | 0.7964 | - | - | - | - | - | - |
1.1973 | 710 | 0.7831 | - | - | - | - | - | - |
1.2142 | 720 | 0.5613 | - | - | - | - | - | - |
1.2310 | 730 | 0.6759 | - | - | - | - | - | - |
1.2479 | 740 | 0.4816 | - | - | - | - | - | - |
1.2648 | 750 | 0.5292 | - | - | - | - | - | - |
1.2816 | 760 | 0.3936 | - | - | - | - | - | - |
1.2985 | 770 | 0.7487 | - | - | - | - | - | - |
1.3153 | 780 | 0.8308 | - | - | - | - | - | - |
1.3322 | 790 | 0.3518 | - | - | - | - | - | - |
1.3491 | 800 | 0.8495 | - | - | - | - | - | - |
1.3659 | 810 | 1.0201 | - | - | - | - | - | - |
1.3828 | 820 | 0.7711 | - | - | - | - | - | - |
1.3997 | 830 | 0.6631 | - | - | - | - | - | - |
1.4165 | 840 | 0.8094 | - | - | - | - | - | - |
1.4334 | 850 | 0.5915 | - | - | - | - | - | - |
1.4503 | 860 | 0.689 | - | - | - | - | - | - |
1.4671 | 870 | 0.3538 | - | - | - | - | - | - |
1.4840 | 880 | 0.4916 | - | - | - | - | - | - |
1.5008 | 890 | 1.0626 | - | - | - | - | - | - |
1.5177 | 900 | 0.7237 | - | - | - | - | - | - |
1.5346 | 910 | 0.5194 | - | - | - | - | - | - |
1.5514 | 920 | 0.682 | - | - | - | - | - | - |
1.5683 | 930 | 0.452 | - | - | - | - | - | - |
1.5852 | 940 | 0.8517 | - | - | - | - | - | - |
1.6020 | 950 | 0.3138 | - | - | - | - | - | - |
1.6189 | 960 | 1.0786 | - | - | - | - | - | - |
1.6358 | 970 | 0.683 | - | - | - | - | - | - |
1.6526 | 980 | 0.288 | - | - | - | - | - | - |
1.6695 | 990 | 0.4779 | - | - | - | - | - | - |
1.6863 | 1000 | 0.5353 | - | - | - | - | - | - |
1.7032 | 1010 | 1.0529 | - | - | - | - | - | - |
1.7201 | 1020 | 0.3482 | - | - | - | - | - | - |
1.7369 | 1030 | 1.2722 | - | - | - | - | - | - |
1.7538 | 1040 | 0.2862 | - | - | - | - | - | - |
1.7707 | 1050 | 0.5556 | - | - | - | - | - | - |
1.7875 | 1060 | 0.3363 | - | - | - | - | - | - |
1.8044 | 1070 | 0.3817 | - | - | - | - | - | - |
1.8212 | 1080 | 0.787 | - | - | - | - | - | - |
1.8381 | 1090 | 0.8169 | - | - | - | - | - | - |
1.8550 | 1100 | 0.8241 | - | - | - | - | - | - |
1.8718 | 1110 | 0.8071 | - | - | - | - | - | - |
1.8887 | 1120 | 0.7825 | - | - | - | - | - | - |
1.9056 | 1130 | 0.6786 | - | - | - | - | - | - |
1.9224 | 1140 | 0.2086 | - | - | - | - | - | - |
1.9393 | 1150 | 0.8414 | - | - | - | - | - | - |
1.9562 | 1160 | 0.7762 | - | - | - | - | - | - |
1.9730 | 1170 | 0.5421 | - | - | - | - | - | - |
1.9899 | 1180 | 0.2344 | - | - | - | - | - | - |
2.0 | 1186 | - | 0.7265 | 0.7258 | 0.7167 | 0.7084 | 0.7002 | 0.6757 |
2.0067 | 1190 | 0.1232 | - | - | - | - | - | - |
2.0236 | 1200 | 0.473 | - | - | - | - | - | - |
2.0405 | 1210 | 0.2913 | - | - | - | - | - | - |
2.0573 | 1220 | 0.27 | - | - | - | - | - | - |
2.0742 | 1230 | 0.33 | - | - | - | - | - | - |
2.0911 | 1240 | 0.3323 | - | - | - | - | - | - |
2.1079 | 1250 | 0.2355 | - | - | - | - | - | - |
2.1248 | 1260 | 0.1089 | - | - | - | - | - | - |
2.1417 | 1270 | 0.245 | - | - | - | - | - | - |
2.1585 | 1280 | 0.4385 | - | - | - | - | - | - |
2.1754 | 1290 | 0.3904 | - | - | - | - | - | - |
2.1922 | 1300 | 0.4299 | - | - | - | - | - | - |
2.2091 | 1310 | 0.1338 | - | - | - | - | - | - |
2.2260 | 1320 | 0.2211 | - | - | - | - | - | - |
2.2428 | 1330 | 0.2363 | - | - | - | - | - | - |
2.2597 | 1340 | 0.0486 | - | - | - | - | - | - |
2.2766 | 1350 | 0.1347 | - | - | - | - | - | - |
2.2934 | 1360 | 0.1469 | - | - | - | - | - | - |
2.3103 | 1370 | 0.064 | - | - | - | - | - | - |
2.3272 | 1380 | 0.2582 | - | - | - | - | - | - |
2.3440 | 1390 | 0.5994 | - | - | - | - | - | - |
2.3609 | 1400 | 0.4847 | - | - | - | - | - | - |
2.3777 | 1410 | 0.7184 | - | - | - | - | - | - |
2.3946 | 1420 | 0.2852 | - | - | - | - | - | - |
2.4115 | 1430 | 0.4838 | - | - | - | - | - | - |
2.4283 | 1440 | 0.2932 | - | - | - | - | - | - |
2.4452 | 1450 | 0.2452 | - | - | - | - | - | - |
2.4621 | 1460 | 0.3531 | - | - | - | - | - | - |
2.4789 | 1470 | 0.2666 | - | - | - | - | - | - |
2.4958 | 1480 | 0.2835 | - | - | - | - | - | - |
2.5126 | 1490 | 0.4196 | - | - | - | - | - | - |
2.5295 | 1500 | 0.2563 | - | - | - | - | - | - |
2.5464 | 1510 | 0.242 | - | - | - | - | - | - |
2.5632 | 1520 | 0.4055 | - | - | - | - | - | - |
2.5801 | 1530 | 0.489 | - | - | - | - | - | - |
2.5970 | 1540 | 0.055 | - | - | - | - | - | - |
2.6138 | 1550 | 0.6144 | - | - | - | - | - | - |
2.6307 | 1560 | 0.9092 | - | - | - | - | - | - |
2.6476 | 1570 | 0.6883 | - | - | - | - | - | - |
2.6644 | 1580 | 0.4246 | - | - | - | - | - | - |
2.6813 | 1590 | 0.317 | - | - | - | - | - | - |
2.6981 | 1600 | 0.134 | - | - | - | - | - | - |
2.7150 | 1610 | 0.2629 | - | - | - | - | - | - |
2.7319 | 1620 | 0.3845 | - | - | - | - | - | - |
2.7487 | 1630 | 0.4989 | - | - | - | - | - | - |
2.7656 | 1640 | 0.5606 | - | - | - | - | - | - |
2.7825 | 1650 | 0.0395 | - | - | - | - | - | - |
2.7993 | 1660 | 0.2427 | - | - | - | - | - | - |
2.8162 | 1670 | 0.1805 | - | - | - | - | - | - |
2.8331 | 1680 | 0.1047 | - | - | - | - | - | - |
2.8499 | 1690 | 0.717 | - | - | - | - | - | - |
2.8668 | 1700 | 0.2244 | - | - | - | - | - | - |
2.8836 | 1710 | 0.202 | - | - | - | - | - | - |
2.9005 | 1720 | 0.2982 | - | - | - | - | - | - |
2.9174 | 1730 | 0.1291 | - | - | - | - | - | - |
2.9342 | 1740 | 0.3133 | - | - | - | - | - | - |
2.9511 | 1750 | 0.1415 | - | - | - | - | - | - |
2.9680 | 1760 | 0.2754 | - | - | - | - | - | - |
2.9848 | 1770 | 0.5691 | - | - | - | - | - | - |
3.0 | 1779 | - | 0.7298 | 0.7167 | 0.721 | 0.708 | 0.7126 | 0.692 |
3.0017 | 1780 | 0.0698 | - | - | - | - | - | - |
3.0185 | 1790 | 0.3206 | - | - | - | - | - | - |
3.0354 | 1800 | 0.3665 | - | - | - | - | - | - |
3.0523 | 1810 | 0.0085 | - | - | - | - | - | - |
3.0691 | 1820 | 0.2066 | - | - | - | - | - | - |
3.0860 | 1830 | 0.3554 | - | - | - | - | - | - |
3.1029 | 1840 | 0.2967 | - | - | - | - | - | - |
3.1197 | 1850 | 0.0984 | - | - | - | - | - | - |
3.1366 | 1860 | 0.4303 | - | - | - | - | - | - |
3.1535 | 1870 | 0.1165 | - | - | - | - | - | - |
3.1703 | 1880 | 0.1966 | - | - | - | - | - | - |
3.1872 | 1890 | 0.1865 | - | - | - | - | - | - |
3.2040 | 1900 | 0.386 | - | - | - | - | - | - |
3.2209 | 1910 | 0.1836 | - | - | - | - | - | - |
3.2378 | 1920 | 0.2119 | - | - | - | - | - | - |
3.2546 | 1930 | 0.0979 | - | - | - | - | - | - |
3.2715 | 1940 | 0.286 | - | - | - | - | - | - |
3.2884 | 1950 | 0.1315 | - | - | - | - | - | - |
3.3052 | 1960 | 0.32 | - | - | - | - | - | - |
3.3221 | 1970 | 0.5843 | - | - | - | - | - | - |
3.3390 | 1980 | 0.201 | - | - | - | - | - | - |
3.3558 | 1990 | 0.3161 | - | - | - | - | - | - |
3.3727 | 2000 | 0.1855 | - | - | - | - | - | - |
3.3895 | 2010 | 0.0993 | - | - | - | - | - | - |
3.4064 | 2020 | 0.2922 | - | - | - | - | - | - |
3.4233 | 2030 | 0.3549 | - | - | - | - | - | - |
3.4401 | 2040 | 0.0385 | - | - | - | - | - | - |
3.4570 | 2050 | 0.3567 | - | - | - | - | - | - |
3.4739 | 2060 | 0.2036 | - | - | - | - | - | - |
3.4907 | 2070 | 0.666 | - | - | - | - | - | - |
3.5076 | 2080 | 0.127 | - | - | - | - | - | - |
3.5245 | 2090 | 0.1066 | - | - | - | - | - | - |
3.5413 | 2100 | 0.1094 | - | - | - | - | - | - |
3.5582 | 2110 | 0.0989 | - | - | - | - | - | - |
3.5750 | 2120 | 0.1002 | - | - | - | - | - | - |
3.5919 | 2130 | 0.0959 | - | - | - | - | - | - |
3.6088 | 2140 | 0.479 | - | - | - | - | - | - |
3.6256 | 2150 | 0.2854 | - | - | - | - | - | - |
3.6425 | 2160 | 0.3548 | - | - | - | - | - | - |
3.6594 | 2170 | 0.2801 | - | - | - | - | - | - |
3.6762 | 2180 | 0.2012 | - | - | - | - | - | - |
3.6931 | 2190 | 0.3343 | - | - | - | - | - | - |
3.7099 | 2200 | 0.4601 | - | - | - | - | - | - |
3.7268 | 2210 | 0.1198 | - | - | - | - | - | - |
3.7437 | 2220 | 0.152 | - | - | - | - | - | - |
3.7605 | 2230 | 0.0899 | - | - | - | - | - | - |
3.7774 | 2240 | 0.2245 | - | - | - | - | - | - |
3.7943 | 2250 | 0.4322 | - | - | - | - | - | - |
3.8111 | 2260 | 0.1466 | - | - | - | - | - | - |
3.8280 | 2270 | 0.2181 | - | - | - | - | - | - |
3.8449 | 2280 | 0.441 | - | - | - | - | - | - |
3.8617 | 2290 | 0.4819 | - | - | - | - | - | - |
3.8786 | 2300 | 0.3004 | - | - | - | - | - | - |
3.8954 | 2310 | 0.1952 | - | - | - | - | - | - |
3.9123 | 2320 | 0.2417 | - | - | - | - | - | - |
3.9292 | 2330 | 0.4047 | - | - | - | - | - | - |
3.9460 | 2340 | 0.2326 | - | - | - | - | - | - |
3.9629 | 2350 | 0.1564 | - | - | - | - | - | - |
3.9798 | 2360 | 0.1566 | - | - | - | - | - | - |
3.9966 | 2370 | 0.1281 | - | - | - | - | - | - |
4.0 | 2372 | - | 0.7326 | 0.7268 | 0.7245 | 0.7120 | 0.7055 | 0.7055 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 21
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for fitlemon/bge-m3-uz-legal-matryoshka
Base model
BAAI/bge-m3Evaluation results
- Cosine Accuracy@1 on dim 1024self-reported0.491
- Cosine Accuracy@3 on dim 1024self-reported0.818
- Cosine Accuracy@5 on dim 1024self-reported0.896
- Cosine Accuracy@10 on dim 1024self-reported0.947
- Cosine Precision@1 on dim 1024self-reported0.491
- Cosine Precision@3 on dim 1024self-reported0.273
- Cosine Precision@5 on dim 1024self-reported0.179
- Cosine Precision@10 on dim 1024self-reported0.095
- Cosine Recall@1 on dim 1024self-reported0.491
- Cosine Recall@3 on dim 1024self-reported0.818