|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- absa |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: gulungan biasa menjadi gulungan luar dalam,:dibutuhkan biaya tambahan $2 untuk |
|
mengubah gulungan biasa menjadi gulungan luar dalam, tetapi gulungan tersebut |
|
berukuran lebih dari tiga kali lipat, dan itu bukan ha dari nasi. |
|
- text: -a-bagel (baik di:ess-a-bagel (baik di sty-town atau midtown) sejauh ini merupakan |
|
bagel terbaik di ny. |
|
- text: mahal wadah ini pengelola:ketika kami sedang duduk makan makanan di bawah |
|
standar, manajer mulai mencaci-maki beberapa karyawan karena meletakkan wadah |
|
bumbu yang salah dan menjelaskan kepada mereka betapa mahal wadah ini pengelola |
|
- text: staf sangat akomodatif.:staf sangat akomodatif. |
|
- text: layanan luar biasa melayani:makanan india yang enak dan layanan luar biasa |
|
melayani |
|
pipeline_tag: text-classification |
|
inference: false |
|
base_model: BAAI/bge-m3 |
|
model-index: |
|
- name: SetFit Polarity Model with BAAI/bge-m3 |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.7898320472083522 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit Polarity Model with BAAI/bge-m3 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
This model was trained within the context of a larger system for ABSA, which looks like so: |
|
|
|
1. Use a spaCy model to select possible aspect span candidates. |
|
2. Use a SetFit model to filter these possible aspect span candidates. |
|
3. **Use this SetFit model to classify the filtered aspect span candidates.** |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **spaCy Model:** id_core_news_trf |
|
- **SetFitABSA Aspect Model:** [firqaaa/indo-setfit-absa-bert-base-restaurants-aspect](https://huggingface.co/firqaaa/indo-setfit-absa-bert-base-restaurants-aspect) |
|
- **SetFitABSA Polarity Model:** [firqaaa/indo-setfit-absa-bert-base-restaurants-polarity](https://huggingface.co/firqaaa/indo-setfit-absa-bert-base-restaurants-polarity) |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Number of Classes:** 4 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:--------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| netral | <ul><li>'sangat kecil sehingga reservasi adalah suatu keharusan:restoran ini sangat kecil sehingga reservasi adalah suatu keharusan.'</li><li>'di dekat seorang busboy dan mendesiskan rapido:di sebelah kanan saya, nyo rumah berdiri di dekat seorang busboy dan mendesiskan rapido, rapido ketika dia mencoba membersihkan dan mengatur ulang meja untuk enam orang.'</li><li>'dan mengatur ulang meja untuk enam orang:di sebelah kanan saya, nyo rumah berdiri di dekat seorang busboy dan mendesiskan rapido, rapido ketika dia mencoba membersihkan dan mengatur ulang meja untuk enam orang.'</li></ul> | |
|
| negatif | <ul><li>'untuk enam orang nyonya rumah:di sebelah kanan saya, nyo rumah berdiri di dekat seorang busboy dan mendesiskan rapido, rapido ketika dia mencoba membersihkan dan mengatur ulang meja untuk enam orang nyonya rumah'</li><li>'setelah berurusan dengan pizza di bawah standar:setelah berurusan dengan pizza di bawah standar di seluruh lingkungan kensington - saya menemukan sedikit tonino.'</li><li>'mereka tidak mejikan bir, anda harus:perhatikan bahwa mereka tidak mejikan bir, anda harus membawa sendiri.'</li></ul> | |
|
| positif | <ul><li>'saya tidak menyukai gnocchi.:saya tidak menyukai gnocchi.'</li><li>'dari makanan pembuka yang kami makan:dari makanan pembuka yang kami makan, dim sum, dan variasi makanan lain, tidak mungkin untuk mengkritik makanan tersebut.'</li><li>'kami makan, dim sum, dan variasi:dari makanan pembuka yang kami makan, dim sum, dan variasi makanan lain, tidak mungkin untuk mengkritik makanan tersebut.'</li></ul> | |
|
| konflik | <ul><li>'makanan enak tapi jangan:makanan enak tapi jangan datang ke sini dengan perut kosong.'</li><li>'milik pihak rumah tagihan:namun, setiap perselisihan tentang ruu itu diimbangi oleh takaran minuman keras yang anda tuangkan sendiri yang merupakan milik pihak rumah tagihan'</li><li>'layanan meja bisa menjadi sedikit:layanan meja bisa menjadi sedikit lebih penuh perhatian tetapi sebagai seseorang yang juga bekerja di industri jasa, saya mengerti mereka sedang sibuk.'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.7898 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import AbsaModel |
|
|
|
# Download from the 🤗 Hub |
|
model = AbsaModel.from_pretrained( |
|
"firqaaa/setfit-indo-absa-restaurants-aspect", |
|
"firqaaa/setfit-indo-absa-restaurants-polarity", |
|
) |
|
# Run inference |
|
preds = model("The food was great, but the venue is just way too busy.") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 3 | 20.6594 | 62 | |
|
|
|
| Label | Training Sample Count | |
|
|:--------|:----------------------| |
|
| konflik | 34 | |
|
| negatif | 323 | |
|
| netral | 258 | |
|
| positif | 853 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 16) |
|
- num_epochs: (1, 1) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: True |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: True |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:----------:|:--------:|:-------------:|:---------------:| |
|
| 0.0000 | 1 | 0.2345 | - | |
|
| 0.0006 | 50 | 0.2337 | - | |
|
| 0.0013 | 100 | 0.267 | - | |
|
| 0.0019 | 150 | 0.2335 | - | |
|
| 0.0025 | 200 | 0.2368 | - | |
|
| 0.0032 | 250 | 0.2199 | - | |
|
| 0.0038 | 300 | 0.2325 | - | |
|
| 0.0045 | 350 | 0.2071 | - | |
|
| 0.0051 | 400 | 0.2229 | - | |
|
| 0.0057 | 450 | 0.1153 | - | |
|
| 0.0064 | 500 | 0.1771 | 0.1846 | |
|
| 0.0070 | 550 | 0.1612 | - | |
|
| 0.0076 | 600 | 0.1487 | - | |
|
| 0.0083 | 650 | 0.147 | - | |
|
| 0.0089 | 700 | 0.1982 | - | |
|
| 0.0096 | 750 | 0.1579 | - | |
|
| 0.0102 | 800 | 0.1148 | - | |
|
| 0.0108 | 850 | 0.1008 | - | |
|
| 0.0115 | 900 | 0.2035 | - | |
|
| 0.0121 | 950 | 0.1348 | - | |
|
| **0.0127** | **1000** | **0.0974** | **0.182** | |
|
| 0.0134 | 1050 | 0.121 | - | |
|
| 0.0140 | 1100 | 0.1949 | - | |
|
| 0.0147 | 1150 | 0.2424 | - | |
|
| 0.0153 | 1200 | 0.0601 | - | |
|
| 0.0159 | 1250 | 0.0968 | - | |
|
| 0.0166 | 1300 | 0.0137 | - | |
|
| 0.0172 | 1350 | 0.034 | - | |
|
| 0.0178 | 1400 | 0.1217 | - | |
|
| 0.0185 | 1450 | 0.0454 | - | |
|
| 0.0191 | 1500 | 0.0397 | 0.2216 | |
|
| 0.0198 | 1550 | 0.0226 | - | |
|
| 0.0204 | 1600 | 0.0939 | - | |
|
| 0.0210 | 1650 | 0.0537 | - | |
|
| 0.0217 | 1700 | 0.0566 | - | |
|
| 0.0223 | 1750 | 0.162 | - | |
|
| 0.0229 | 1800 | 0.0347 | - | |
|
| 0.0236 | 1850 | 0.103 | - | |
|
| 0.0242 | 1900 | 0.0615 | - | |
|
| 0.0249 | 1950 | 0.0589 | - | |
|
| 0.0255 | 2000 | 0.1668 | 0.2132 | |
|
| 0.0261 | 2050 | 0.1809 | - | |
|
| 0.0268 | 2100 | 0.0579 | - | |
|
| 0.0274 | 2150 | 0.088 | - | |
|
| 0.0280 | 2200 | 0.1047 | - | |
|
| 0.0287 | 2250 | 0.1255 | - | |
|
| 0.0293 | 2300 | 0.0312 | - | |
|
| 0.0300 | 2350 | 0.0097 | - | |
|
| 0.0306 | 2400 | 0.0973 | - | |
|
| 0.0312 | 2450 | 0.0066 | - | |
|
| 0.0319 | 2500 | 0.0589 | 0.2591 | |
|
| 0.0325 | 2550 | 0.0529 | - | |
|
| 0.0331 | 2600 | 0.0169 | - | |
|
| 0.0338 | 2650 | 0.0455 | - | |
|
| 0.0344 | 2700 | 0.0609 | - | |
|
| 0.0350 | 2750 | 0.1151 | - | |
|
| 0.0357 | 2800 | 0.0031 | - | |
|
| 0.0363 | 2850 | 0.0546 | - | |
|
| 0.0370 | 2900 | 0.0051 | - | |
|
| 0.0376 | 2950 | 0.0679 | - | |
|
| 0.0382 | 3000 | 0.0046 | 0.2646 | |
|
| 0.0389 | 3050 | 0.011 | - | |
|
| 0.0395 | 3100 | 0.0701 | - | |
|
| 0.0401 | 3150 | 0.0011 | - | |
|
| 0.0408 | 3200 | 0.011 | - | |
|
| 0.0414 | 3250 | 0.0026 | - | |
|
| 0.0421 | 3300 | 0.0027 | - | |
|
| 0.0427 | 3350 | 0.0012 | - | |
|
| 0.0433 | 3400 | 0.0454 | - | |
|
| 0.0440 | 3450 | 0.0011 | - | |
|
| 0.0446 | 3500 | 0.0012 | 0.2602 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
### Framework Versions |
|
- Python: 3.10.13 |
|
- SetFit: 1.0.3 |
|
- Sentence Transformers: 2.2.2 |
|
- spaCy: 3.7.4 |
|
- Transformers: 4.36.2 |
|
- PyTorch: 2.1.2+cu121 |
|
- Datasets: 2.16.1 |
|
- Tokenizers: 0.15.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |