|
--- |
|
language: |
|
- id |
|
pipeline_tag: text-generation |
|
license: cc-by-nc-4.0 |
|
library_name: transformers |
|
tags: |
|
- llama |
|
- alpaca |
|
- lora |
|
--- |
|
# About : |
|
This 🦙 Llama model was trained on a translated Alpaca dataset in Bahasa Indonesia. It uses Parameter Efficient Fine Tuning and LoRA to enable training on consumer-grade GPU hardware. |
|
|
|
# How to Use : |
|
|
|
## Load the 🦙 Alpaca-LoRA model |
|
|
|
```python |
|
import torch |
|
import bitsandbytes as bnb |
|
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig |
|
from peft import PeftModel, PeftConfig, prepare_model_for_int8_training, LoraConfig, get_peft_model |
|
|
|
peft_model_id = "firqaaa/indo-Alpaca-LoRA-7b" |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf") |
|
model = LlamaForCausalLM.from_pretrained("decapoda-research/llama-7b-hf", |
|
load_in_8bit=True, |
|
device_map="auto") |
|
# Load the LoRA model |
|
model = PeftModel.from_pretrained(model, peft_model_id) |
|
``` |
|
## Prompt Template |
|
Prepare the prompt template |
|
|
|
```python |
|
instruction = "Tuliskan deret bilangan fibbonaci. Tulis jawaban/respons dalam Bahasa Indonesia." |
|
|
|
PROMPT = f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
{instruction} |
|
### Response:""" |
|
``` |
|
|
|
## Evaluation |
|
feel free to change the parameters inside `GenerationConfig` to get better result. |
|
|
|
```python |
|
inputs = tokenizer( |
|
PROMPT, |
|
return_tensors="pt" |
|
) |
|
input_ids = inputs["input_ids"].cuda() |
|
|
|
generation_config = GenerationConfig( |
|
temperature=0.1, |
|
top_p=0.95, |
|
top_k=40, |
|
num_beams=4, |
|
repetition_penalty=1.15, |
|
) |
|
print("Generating...") |
|
print("Instruction : {}".format(instruction)) |
|
|
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=512, |
|
) |
|
print("Response : ") |
|
for s in generation_output.sequences: |
|
print(tokenizer.decode(s).split("### Response:")[1]) |
|
``` |
|
|
|
## Note : |
|
Due to the high loss and lack of compute unit, we will update this model frequently to ensure the quality of generated text |