|
--- |
|
language: |
|
- id |
|
pipeline_tag: text-generation |
|
--- |
|
# About : |
|
This is 🦙 LlaMA model that trained on translated Alpaca dataset in Bahasa Indonesia. It utilize the Parameter Efficient Fine Tuning and LoRA to be able trained on consumer hardware GPU. |
|
|
|
# How to Use : |
|
|
|
## Load the 🦙 Alpaca-LoRA model |
|
|
|
```python |
|
import torch |
|
import bitsandbytes as bnb |
|
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig |
|
from peft import PeftModel, PeftConfig, prepare_model_for_int8_training, LoraConfig, get_peft_model |
|
|
|
peft_model_id = "firqaaa/indo-Alpaca-LoRA-7b" |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf") |
|
model = LlamaForCausalLM.from_pretrained("decapoda-research/llama-7b-hf", |
|
load_in_8bit=True, |
|
device_map="auto") |
|
# Load the LoRA model |
|
model = PeftModel.from_pretrained(model, peft_model_id) |
|
``` |
|
## Prompt Template |
|
|
|
```python |
|
def generate_prompt(instruction, input=None): |
|
if input: |
|
return f"""Berikut ini adalah petunjuk yang menjelaskan tugas, serta masukan yang menyediakan konteks tambahan. Tulis balasan yang melengkapi permintaan dengan tepat. |
|
|
|
Petunjuk: |
|
{instruction} |
|
|
|
Masukan: |
|
{input} |
|
|
|
Output:""" |
|
|
|
else: |
|
return f"""Berikut ini terdapat panduan yang menjelaskan tugas. Mohon tuliskan balasan yang melengkapi permintaan dengan tepat. |
|
|
|
Panduan: |
|
{instruction} |
|
|
|
Output:""" |
|
``` |
|
|
|
## Evaluation |
|
feel free to change the parameters inside `GenerationConfig` to get better result. |
|
|
|
```python |
|
generation_config = GenerationConfig( |
|
temperature=0.2, |
|
top_p=0.75, |
|
num_beams=8 |
|
) |
|
|
|
def evaluate(instruction, input=None): |
|
prompt = generate_prompt(instruction, input) |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
input_ids = inputs["input_ids"].cuda() |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=256 |
|
) |
|
for s in generation_output.sequences: |
|
output = tokenizer.decode(s) |
|
print("Output:", output.split("Output:")[1].strip()) |
|
|
|
# input your question/instruction |
|
evaluate(input("Petunjuk: ")) |
|
``` |
|
|
|
## Note : |
|
Due to high loss and lack of compute unit, we will update this model frequently so it can generate better result |