pgarbacki's picture
Update README.md
fdfed96 verified
|
raw
history blame
3.75 kB
---
license: apache-2.0
tags:
- function-calling
---
# Fireworks Function Calling (FireFunction) Model V2
<img src="https://cdn-uploads.huggingface.co/production/uploads/64b6f3a72f5a966b9722de88/p2qimncmTIv0Yuy1W_Hhx.png" alt="firefunction" width="400"/>
FireFunction is a state-of-the-art function calling model with a commercially viable license. Key info and highlights:
🐾 Successor of the [FireFunction](https://fireworks.ai/models/fireworks/firefunction-v2) model
πŸ“ Signifficant quality improvements over FireFunction v1 across the broad range of metrics
πŸ”† Support of parallel function calling (unlike FireFunction v1) and good instruction following
πŸ’‘ Hosted on the [Fireworks](https://fireworks.ai/models/fireworks/firefunction-v2) platform
## Resources
* [Fireworks discord with function calling channel](https://discord.gg/mMqQxvFD9A)
* [Documentation](https://readme.fireworks.ai/docs/function-calling)
* [UI Demo app](https://functional-chat.vercel.app/)
* [Try in Fireworks prompt playground UI](https://fireworks.ai/models/fireworks/firefunction-v2)
# Intended Use and Limitations
### Supported usecases
The model was tuned to perfom well on a range of usecases including:
* general instruction following
* multi-turn chat mixing vanilla messages with function calls
* single- and parallel function calling
* up to 20 function specs supported at once
* structured information extraction
### Out-of-Scope Use
The model was not optimized for the following use cases:
* 100+ function specs
* nested function calling
## Example Usage
See [documentation](https://readme.fireworks.ai/docs/function-calling) for more detail.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import json
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("fireworks-ai/firefunction-v2", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("fireworks-ai/firefunction-v2")
function_spec = [
{
"name": "get_stock_price",
"description": "Get the current stock price",
"parameters": {
"type": "object",
"properties": {
"symbol": {
"type": "string",
"description": "The stock symbol, e.g. AAPL, GOOG"
}
},
"required": [
"symbol"
]
}
},
{
"name": "check_word_anagram",
"description": "Check if two words are anagrams of each other",
"parameters": {
"type": "object",
"properties": {
"word1": {
"type": "string",
"description": "The first word"
},
"word2": {
"type": "string",
"description": "The second word"
}
},
"required": [
"word1",
"word2"
]
}
}
]
functions = json.dumps(function_spec, indent=4)
messages = [
{'role': 'functions', 'content': functions},
{'role': 'system', 'content': 'You are a helpful assistant with access to functions. Use them if required.'},
{'role': 'user', 'content': 'Hi, can you tell me the current stock price of google and netflix?'}
]
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
generated_ids = model.generate(model_inputs, max_new_tokens=128)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```
## Demo App
Check our easy-to-extend [demo chat app](https://github.com/fw-ai/forge/tree/main/apps/functional_chat) with function calling capabilities built on Firefunction model.