language: cz | |
**Optical Character Recognition made seamless & accessible to anyone, powered by PyTorch** | |
## Task: recognition | |
### Example usage: | |
```python | |
>>> from doctr.io import DocumentFile | |
>>> from doctr.models import ocr_predictor, from_hub | |
>>> img = DocumentFile.from_images(['<image_path>']) | |
>>> # Load your model from the hub | |
>>> model = from_hub('mindee/my-model') | |
>>> # Pass it to the predictor | |
>>> # If your model is a recognition model: | |
>>> predictor = ocr_predictor(det_arch='db_resnet50', | |
>>> reco_arch=model, | |
>>> pretrained=True) | |
>>> # Get your predictions | |
>>> res = predictor(img) | |
``` | |
Training configuration and logs: https://wandb.ai/xbankov/text-recognition | |
### Run Configuration | |
{ | |
"hf_dataset_name": "fimu-docproc-research/born_digital_recognition", | |
"name": "master_250_512_32_0.00711026024243061_0.017221138239850567_constant_da2de2d1_f3c04964", | |
"epochs": 250, | |
"lr": 0.00711026024243061, | |
"weight_decay": 0.017221138239850567, | |
"batch_size": 512, | |
"input_size": 32, | |
"sched": "constant", | |
"sample": null, | |
"workers": 16, | |
"wb": true, | |
"push_to_hub": "fimu-docproc-research/master", | |
"test_only": false, | |
"arch": "master" | |
} |