metadata
library_name: transformers
datasets:
- fhswf/german_handwriting
language:
- de
Model Card for Model ID
Model Details
TrOCR model fine-tuned on the german_handwriting. It was introduced in the paper TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models by Li et al. and first released in this repository.
- Developed by: [More Information Needed]
- Model type: Transformer OCR
- Language(s) (NLP): German
- License: [More Information Needed]
- Finetuned from model [optional]: TrOCR_large_handwritten
Uses
Here is how to use this model in PyTorch:
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image
import requests
# load image from the IAM database
url = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg'
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
processor = TrOCRProcessor.from_pretrained('TGrote11/testModel')
model = VisionEncoderDecoderModel.from_pretrained('TGrote11/testModel')
pixel_values = processor(images=image, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
Bias, Risks, and Limitations
You can use the raw model for optical character recognition (OCR) on single text-line images of german handwriting.
Training Details
Training Data
This model was finetuned on german_handwriting.
Training Procedure
Evaluation
Levenshtein: 1.85 \ WER (Word Error Rate): 17.5% \ CER (Character Error Rate): 4.1%
BibTeX:
@misc{li2021trocr,
title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models},
author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei},
year={2021},
eprint={2109.10282},
archivePrefix={arXiv},
primaryClass={cs.CL}
}