xLakeChat
xLakeChat is a merge of the following models
🧩 Configuration
models:
- model: senseable/WestLake-7B-v2
# no params for base model
- model: xDAN-AI/xDAN-L1-Chat-RL-v1
parameters:
weight: 0.73
density: 0.64
- model: fhai50032/BeagleLake-7B-Toxic
parameters:
weight: 0.46
density: 0.55
merge_method: dare_ties
base_model: senseable/WestLake-7B-v2
parameters:
normalize: true
int8_mask: true
dtype: float16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "fhai50032/xLakeChat"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 63.72 |
AI2 Reasoning Challenge (25-Shot) | 62.37 |
HellaSwag (10-Shot) | 82.64 |
MMLU (5-Shot) | 59.32 |
TruthfulQA (0-shot) | 52.96 |
Winogrande (5-shot) | 74.74 |
GSM8k (5-shot) | 50.27 |
- Downloads last month
- 46
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for fhai50032/xLakeChat
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard62.370
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard82.640
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard59.320
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard52.960
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard74.740
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard50.270