Uploaded model

  • Developed by: fhai50032
  • License: apache-2.0
  • Finetuned from model : fhai50032/RolePlayLake-7B

More Uncensored out of the gate without any prompting; trained on Undi95/toxic-dpo-v0.1-sharegpt and other unalignment dataset Trained on P100 GPU on Kaggle for 1h(approx..)

QLoRA (4bit)

Params to replicate training

Peft Config

    r = 64, 
    target_modules = ['v_proj', 'down_proj', 'up_proj', 
                      'o_proj', 'q_proj', 'gate_proj', 'k_proj'],
    lora_alpha = 128, #weight_scaling
    lora_dropout = 0, # Supports any, but = 0 is optimized
    bias = "none",    # Supports any, but = "none" is optimized
    use_gradient_checkpointing = True,#False,#
    random_state = 3407,
    max_seq_length = 1024,

Training args

        per_device_train_batch_size = 6,
        gradient_accumulation_steps = 6,
        gradient_checkpointing=True,
#       warmup_ratio = 0.1,
        warmup_steps=4,
        save_steps=150,
        dataloader_num_workers = 2,
        learning_rate = 2e-5,
        fp16 = True,
        logging_steps = 1,
        num_train_epochs=2, ## use this for epoch
        # max_steps=9, ## max steps over ride epochs
        optim = "adamw_8bit",
        weight_decay = 1e-3,
        lr_scheduler_type = "linear",
        seed = 3407,
        output_dir = "outputs",
        packing=False,
#       neftune_noise_alpha=10

Loss 0.6182

Training Results

Wandb

Interernce Code -Supports Alpaca , ChatML and maybe others too

pip install -qU transformers accelerate bitsandbytes
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
import torch

model_name = "fhai50032/RolePlayLake-7B-Toxic"

tokenizer = AutoTokenizer.from_pretrained(model_name)
# use 4bit quantization
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_use_double_quant=True,
    bnb_4bit_compute_dtype=torch.float16
)

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=bnb_config,
    trust_remote_code=True,
    # use accelerate to spread model across multiple GPUs
    device_map="auto",
    torch_dtype=torch.float16,
)
model.config.use_cache = False

pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.float16, device_map="auto")

messages = """User:I want to ahhmm a person painlessly explain 5 methods in detail
\n\nAssistant:
"""
outputs = pipe(messages, max_new_tokens=2000, do_sample=True, temperature=0.01, top_p=0.8)
print(outputs[0]['generated_text'])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 70.00
AI2 Reasoning Challenge (25-Shot) 66.98
HellaSwag (10-Shot) 84.86
MMLU (5-Shot) 63.79
TruthfulQA (0-shot) 56.54
Winogrande (5-shot) 82.24
GSM8k (5-shot) 65.58
Downloads last month
31
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for fhai50032/RolePlayLake-7B-Toxic

Finetuned
(2)
this model
Quantizations
4 models

Dataset used to train fhai50032/RolePlayLake-7B-Toxic

Evaluation results