|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: biobert_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# biobert_model |
|
|
|
This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9645 |
|
- Accuracy: 0.8711 |
|
- F1: 0.8475 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| No log | 1.0 | 334 | 0.6463 | 0.6897 | 0.7129 | |
|
| 0.4503 | 2.0 | 668 | 0.3590 | 0.8651 | 0.8269 | |
|
| 0.2715 | 3.0 | 1002 | 0.4549 | 0.8711 | 0.8252 | |
|
| 0.2715 | 4.0 | 1336 | 0.6012 | 0.8681 | 0.8434 | |
|
| 0.1335 | 5.0 | 1670 | 0.6307 | 0.8576 | 0.8313 | |
|
| 0.0746 | 6.0 | 2004 | 0.7658 | 0.8636 | 0.8366 | |
|
| 0.0746 | 7.0 | 2338 | 0.8658 | 0.8666 | 0.8436 | |
|
| 0.0307 | 8.0 | 2672 | 0.8312 | 0.8711 | 0.8453 | |
|
| 0.0148 | 9.0 | 3006 | 0.8922 | 0.8651 | 0.8421 | |
|
| 0.0148 | 10.0 | 3340 | 0.8761 | 0.8726 | 0.8490 | |
|
| 0.0128 | 11.0 | 3674 | 0.9329 | 0.8681 | 0.8462 | |
|
| 0.0105 | 12.0 | 4008 | 0.9512 | 0.8666 | 0.8441 | |
|
| 0.0105 | 13.0 | 4342 | 0.9553 | 0.8711 | 0.8475 | |
|
| 0.0069 | 14.0 | 4676 | 0.9731 | 0.8681 | 0.8445 | |
|
| 0.0046 | 15.0 | 5010 | 0.9645 | 0.8711 | 0.8475 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.29.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|