zephyr-7b-dpo-full / README.md
fenguhao's picture
End of training
8340204 verified
metadata
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
  - alignment-handbook
  - generated_from_trainer
  - trl
  - dpo
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
model-index:
  - name: zephyr-7b-dpo-full
    results: []

zephyr-7b-dpo-full

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5046
  • Rewards/chosen: -1.1826
  • Rewards/rejected: -2.0581
  • Rewards/accuracies: 0.7246
  • Rewards/margins: 0.8756
  • Logps/rejected: -470.5493
  • Logps/chosen: -395.9858
  • Logits/rejected: 0.0457
  • Logits/chosen: -0.4473

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • gradient_accumulation_steps: 10
  • total_train_batch_size: 120
  • total_eval_batch_size: 12
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.5764 0.2 100 0.5829 -0.3592 -0.7613 0.6931 0.4020 -340.8605 -313.6503 -2.4360 -2.4791
0.5169 0.39 200 0.5312 -0.8847 -1.6204 0.7066 0.7356 -426.7720 -366.2012 -0.8443 -1.2010
0.5133 0.59 300 0.5159 -1.1886 -1.9604 0.7246 0.7718 -460.7765 -396.5906 0.0460 -0.3853
0.4968 0.79 400 0.5058 -1.2445 -2.1063 0.7141 0.8618 -475.3639 -402.1766 0.2014 -0.2552
0.4833 0.98 500 0.5045 -1.1821 -2.0581 0.7260 0.8760 -470.5448 -395.9374 0.0436 -0.4496

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2
  • Datasets 2.14.6
  • Tokenizers 0.15.2