metadata
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
- alignment-handbook
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: zephyr-7b-dpo-full
results: []
zephyr-7b-dpo-full
This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:
- Loss: 0.5168
- Rewards/chosen: 0.1142
- Rewards/rejected: -0.9329
- Rewards/accuracies: 0.7695
- Rewards/margins: 1.0471
- Logps/rejected: -272.7659
- Logps/chosen: -262.3270
- Logits/rejected: -2.5421
- Logits/chosen: -2.5184
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.5155 | 0.21 | 100 | 0.5466 | 0.2422 | -0.6585 | 0.7656 | 0.9007 | -270.0222 | -261.0468 | -2.6271 | -2.6117 |
0.4988 | 0.42 | 200 | 0.5294 | 0.0326 | -0.9993 | 0.7617 | 1.0320 | -273.4304 | -263.1426 | -2.5977 | -2.5791 |
0.5354 | 0.63 | 300 | 0.5235 | 0.5272 | -0.4961 | 0.7656 | 1.0232 | -268.3980 | -258.1974 | -2.5449 | -2.5231 |
0.5043 | 0.84 | 400 | 0.5181 | 0.1494 | -0.9114 | 0.7734 | 1.0608 | -272.5513 | -261.9752 | -2.5355 | -2.5122 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2
- Datasets 2.14.6
- Tokenizers 0.15.2